Measuring CAMD technique performance: A virtual screening case study in the design of validation experiments

  • Andrew C. Good
  • Mark A. Hermsmeier
  • S.A. Hindle
Article

Abstract

The dynamic nature and comparatively young age of computational chemistry is such that novel algorithms continue to be developed at a rapid pace. Such efforts are often wrought at the expense of extensive experimental validations of said techniques, preventing a deeper understanding of their potential utility and limitations. Here we address this issue for ligand-based virtual screening descriptors through design of validation experiments that better reflect the aims of real world application. Applying the newly defined chemotype enrichment approach, a variety of two- and three-dimensional (2D/3D) similarity descriptors have been compared extensively across data sets from four diverse target types. The inhibitors within said data sets contain molecules exhibiting a wide array of substructure functionality, size and flexibility, permitting descriptor comparison in myriad settings. Relative descriptor performance under these conditions is examined, including results obtained using more typical virtual screening validation experiments. Guidelines for optimal application of said descriptors are also discussed in the context of the results obtained, as is the potential utility of fingerprint filtering.

Keywords

atom pairs chemotypes Daylight fingerprints Ftrees pharmacophores validation virtual screening 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wold, S. 1991Quant. Struct.-Act. Relat.10191Google Scholar
  2. Eriksson, L., Johansson, E. and Wold, S., In Chen, F. and Schuurmann G. (Eds.), Quantitative Structure-Activity Relationships in Environmental Sciences-VII, Proceedings of QSAR 96, Elsinore, Denmark, June 24–28, 1996. SETAC, 1997, pp. 381–397.Google Scholar
  3. Giuliani, A. and Benigni, R., In van de Waterbeemd, H., Testa, B. and Folkers, G. (Eds.), Computer-Assisted Lead Finding and Optimization: Current Tools for Medicinal Chemistry, Proceedings of the 11th European QSAR Symposium, VHCA & Wiley-VCH, Weinheim, Germany, 1997, pp. 51–63.Google Scholar
  4. Gaudio, A.C., Zandonade, E. 2001Quim. Nova24658Google Scholar
  5. Kubinyi, H. 2002Quant. Struct.-Act. Relat.21348Google Scholar
  6. Golbraikh, A., Tropsha, A. 2002J. Comput.-Aided Mol. Des.16357Google Scholar
  7. Baumann, K. 2003Trends Anal. Chem.22395Google Scholar
  8. Nilakantan, R., Bauman, N., Venkataraghavan, R. 1993J. Chem. Inf. Comput. Sci.3379Google Scholar
  9. Good, A.C., Ewing, T.J.A., Gschwend, D.A., Kuntz, I. 1995J. Comput.-Aided Mol. Des.91Google Scholar
  10. Kearsley, S.K., Sallamack, S., Fluder, E.M., Andose, J.D., Mosley, R.T., Sheridan, R.P. 1996J. Chem. Inf. Comput. Sci.36118Google Scholar
  11. Raymond, J.W., Willett, P. 2002J. Comput.-Aided Mol. Des.1659Google Scholar
  12. Putta, S., Lemmen, C., Beroza, P., Greene, J. 2002J. Chem. Inf. Comput. Sci.421230Google Scholar
  13. Good, A.C., Cheney, D.L., Sitkoff, D.F., Tokarski, J.S., Stouch, T.R., Bassolino, D.A., Krystek, S.R., Li, Y., Mason, J.S. 2003J. Mol. Graph. Mod.2231Google Scholar
  14. Witt-Enderby, P.A., Li , P.-K. 2000Vitam. Horm.58321Google Scholar
  15. Harris, P.W.R., Hugel, H.M., Nurlawis, F. 2002Mol. Simul.28889Google Scholar
  16. Chilmonczyk, Z., Siluk, D., Kaliszan, R. 2001Exp. Opin. Ther. Pat.111301Google Scholar
  17. Robl, J.A., Sulsky, R.B. and Magnin, D.R., Heterocyclylbiphenyl AP2 inhibitors. WO 2000059506 PCT Int. Appl. (2000).Google Scholar
  18. Wadler, S. 2001Drug Resist. Updates4347Google Scholar
  19. Walenga, J.M., Jeske, W.P., Hoppensteadt, D., Fareed, J. 2003Curr. Opin. Invest. Drugs4272Google Scholar
  20. Daylight fingerprints are produced using the Daylight Toolkit, part of the software suite from Daylight Chemical Information Systems: www.daylight.com.Google Scholar
  21. Rarey, M., Dixon, J.S. 1998J. Comput.-Aided Mol. Des.12471Google Scholar
  22. Ftrees is part of the software suite from BioSolveIT: www.biosolveit.de.Google Scholar
  23. Cahart, R.E., Smith, D.H., Ventkataraghavan, R. 1985J. Chem. Inf. Comput. Sci.2564Google Scholar
  24. Ellis, D., Furner-Hines, J., Willett, P. 1993Perspect. Inf. Manag.3128Google Scholar
  25. Mason, J.S., Morize, I., Menard, P.R., Cheney, D.L., Hulme, C., Labaudiniere, R.F. 1999J. Med. Chem.423251Google Scholar
  26. Good, A.C., Cho, S.-J., Mason, J.S. 2005J. Comput.-Aided. Mol. Des.18 523Google Scholar
  27. Concord 3D structure builder, distributed by Tripos and Optive Research Inc.: www.tripos.com, www.optive.com.Google Scholar
  28. Pickett, S.D., McLay, I.M., Clark, D.E. 2000J. Chem. Inf. Comput. Sci.40263Google Scholar
  29. Sheridan, R.P., Kearsley, S.K. 2002Drug Discov. Today7903Google Scholar
  30. World Drug Index, distributed by Derwent Publications Ltd.: www.derwent.com.Google Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  • Andrew C. Good
    • 1
  • Mark A. Hermsmeier
    • 2
  • S.A. Hindle
    • 3
  1. 1.Bristol-Myers SquibbWallingfordUSA
  2. 2.Bristol-Myers SquibbPrincetonUSA
  3. 3.BioSolveIT GmbHSankt AugustinGermany

Personalised recommendations