Chemomechanics of complex materials: challenges and opportunities in predictive kinetic timescales



What do nanoscopic biomolecular complexes between the cells that line our blood vessels have in common with the microscopic silicate glass fiber optics that line our communication highways, or with the macroscopic steel rails that line our bridges? To be sure, these are diverse materials which have been developed and studied for years by distinct experimental and computational research communities. However, the macroscopic functional properties of each of these structurally complex materials pivots on a strong yet poorly understood interplay between applied mechanical states and local chemical reaction kinetics. As is the case for many multiscale material phenomena, this chemomechanical coupling can be abstracted through computational modeling and simulation to identify key unit processes of mechanically altered chemical reactions. In the modeling community, challenges in predicting the kinetics of such structurally complex materials are often attributed to the so-called rough energy landscape, though rigorous connection between this simple picture and observable properties is possible for only the simplest of structures and transition states. By recognizing the common effects of mechanical force on rare atomistic events ranging from molecular unbinding to hydrolytic atomic bond rupture, we can develop perspectives and tools to address the challenges of predicting macroscopic kinetic consequences in complex materials characterized by rough energy landscapes. Here, we discuss the effects of mechanical force on chemical reactivity for specific complex materials of interest, and indicate how such validated computational analysis can enable predictive design of complex materials in reactive environments.


Chemomechanics Rough energy landscape Computational materials science Kinetic barriers 


  1. 1.
    Walton E.B., Lee S., Vliet K.J.: Extending Bell’s model: how force transducer stiffness alters measured unbinding forces and kinetics of molecular complexes. Biophys. J. 94, 2621–2630 (2007)CrossRefGoogle Scholar
  2. 2.
    Silva E.C., Tong L., Yip S., Vliet K.J.: Size effects on the stiffness of silica nanowires. Small 2(2), 239–243 (2006)PubMedCrossRefGoogle Scholar
  3. 3.
    Forst, C.J., Slycke, J., Van Vliet, K.J., Yip, S.: Point defect concentrations in metastable Fe–C alloys. Phys. Rev. Lett. 96(17) (2006)Google Scholar
  4. 4.
    Andrews B.T., Schoenfish A.R., Roy M., Waldo G., Jennings P.A.: The rough energy landscape of superfolder GFP is linked to the chromophore. J. Mol. Biol. 373(2), 476–490 (2007)PubMedCrossRefGoogle Scholar
  5. 5.
    Gruebele M.: Rough energy landscape of folded and unfolded proteins. Abstr. Pap. Am. Chem. Soc. 227, U267–U267 (2004)Google Scholar
  6. 6.
    Wang J., Huang W.M., Lu H.Y., Wang E.K.: Downhill kinetics of biomolecular interface binding: Globally connected scenario. Biophys. J. 87(4), 2187–2194 (2004)PubMedCrossRefADSGoogle Scholar
  7. 7.
    Onuchic J.N., Wolynes P.G.: Energy landscapes, glass transitions, and chemical-reaction dynamics in biomolecular or solvent environment. J. Chem. Phys. 98(3), 2218–2224 (1993)CrossRefADSGoogle Scholar
  8. 8.
    Simka H., Willis B.G., Lengyel I., Jensen K.F.: chemistry predictions of reaction processes in organometallic vapor phase epitaxy. Progress in Crystal Growth and Characterization of Materials 35(2–4), 117–149 (1997)CrossRefGoogle Scholar
  9. 9.
    Wesolowski T., Muller R.P., Warshel A.: Ab initio frozen density functional calculations of proton transfer reactions in solution. J. Phys. Chem. 100(38), 15444–15449 (1996)CrossRefGoogle Scholar
  10. 10.
    Kim K., Jordan K.D.: Comparison of density-functional and Mp2 calculations on the water monomer and dimer. J. Phys. Chem. 98(40), 10089–10094 (1994)CrossRefGoogle Scholar
  11. 11.
    Henkelman G., Uberuaga B.P., Jonsson H.: A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901–9904 (2000)CrossRefADSGoogle Scholar
  12. 12.
    Henkelman G., Jonsson H.: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113(22), 9978–9985 (2000)CrossRefADSGoogle Scholar
  13. 13.
    Sorensen M.R., Brandbyge M., Jacobsen K.W.: Mechanical deformation of atomic-scale metallic contacts: Structure and mechanisms. Phys. Rev. B 57(6), 3283–3294 (1998)CrossRefADSGoogle Scholar
  14. 14.
    Pincet F., Husson J.: The solution to the streptavidin-biotin paradox: the influence of history on the strength of single molecular bonds. Biophys. J. 89, 4374–4381 (2005)PubMedCrossRefADSGoogle Scholar
  15. 15.
    Merkel R., Nassoy P., Leung A., Ritchie K., Evans E.: Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy. Nature 397, 50–53 (1999)PubMedCrossRefADSGoogle Scholar
  16. 16.
    Coureux P.-D., Fan X., Sojanoff V., Genick U.K.: Picometer-scale conformational heterogeneity separates functional from nonfunctional states of a photoreceptor protein. Structure 16, 863–872 (2008)PubMedCrossRefGoogle Scholar
  17. 17.
    Kellou, A., Grosdidier, T., Aourag, H.: An ab initio study of the effects and stability of vacancies, antisites and small radius atoms (B, C, N, and O) in the B2–FeAl structure. In: Fisher, D.J. (ed.) Defects and Diffusion in Metals—An Annual Retrospective VII, vol. 233–234, pp. 87–95. Defect and Diffusion Forum (2004)Google Scholar
  18. 18.
    Lau T.T., Foerst C.J., Lin X., Gale J.D., Yip S., Van Vliet K.J.: Many-body potential for point defect clusters in Fe–C alloys. Phys. Rev. Lett. 98(21), 215501 (2007)PubMedCrossRefADSGoogle Scholar
  19. 19.
    Legris, A.: Recent advances in point defect studies driven by density functional theory. In: Fisher, D.J. (ed.) Defects and Diffusion in Metals—An Annual Retrospective VII, vol. 233–234, pp. 77–86. Defect and Diffusion Forum (2004)Google Scholar
  20. 20.
    Mizuno T., Asato M., Hoshino T., Kawakami K.: First-principles calculations for vacancy formation energies in Ni and Fe: non-local effect beyond the LSDA and magnetism. J. Magn. Magn. Mater. 226, 386–387 (2001)CrossRefADSGoogle Scholar
  21. 21.
    Simonetti S., Pronsato M.E., Brizuela G., Juan A.: The C–C pair in the vicinity of a bcc Fe bulk vacancy: electronic structure and bonding. Phys. Status Solidi B Basic Solid State Phys. 244(2), 610–618 (2007)CrossRefGoogle Scholar
  22. 22.
    Becquart C.S., Souidi A., Domain C., Hou M., Malerba L., Stoller R.E.: Effect of displacement cascade structure and defect mobility on the growth of point defect clusters under irradiation. J. Nucl. Mater. 351(1–3), 39–46 (2006)CrossRefADSGoogle Scholar
  23. 23.
    Domain C.: Ab initio modelling of defect properties with substitutional and interstitials elements in steels and Zr alloys. J. Nucl. Mater. 351(1–3), 1–19 (2006)CrossRefADSGoogle Scholar
  24. 24.
    Cao C., He Y., Torras J., Deumens E., Trickey S.B., Cheng H.P.: Fracture, water dissociation, and proton conduction in SiO2 nanochains. J. Chem. Phys. 126(21), 211101 (2007)PubMedCrossRefADSGoogle Scholar
  25. 25.
    Zhu T., Li J., Yip S., Bartlett R.J., Trickey S.B., Leeuw N.H.: Deformation and fracture of a SiO2 nanorod. Mol. simul. 29(10–11), 671–676 (2003)CrossRefGoogle Scholar
  26. 26.
    McConnell J.D.C.: Ab initio studies on water related species in quartz and their role in weakening under stress. Phase Transit. 61(1–4), 19–39 (1997)MathSciNetGoogle Scholar
  27. 27.
    Silva, E., Van Vliet, K.J., Yip, S.: Effects of water on chemomechanical instabilities in amorphous silica: nanoscale experiments and molecular simulation. PhD Thesis, Silva, MIT, unpublished results (2007)Google Scholar
  28. 28.
    Van Vliet, K.J., Li, J., Zhu, T., Yip, S., Suresh, S.: Quantifying the early stages of plasticity through nanoscale experiments and simulations. Phys. Rev. B 67(10)(2003)Google Scholar
  29. 29.
    Li J., Zhu T., Yip S., Vliet K.J., Suresh S.: Elastic criterion for dislocation nucleation. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 365(1–2), 25–30 (2004)Google Scholar
  30. 30.
    Li J., Vliet K.J., Zhu T., Yip S., Suresh S.: Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418(6895), 307–310 (2002)PubMedCrossRefADSGoogle Scholar
  31. 31.
    Coureux P.-D., Fan Z., Stojanoff V., Genick U.K.: Picometer-scale conformational heterogeneity separates functional and nonfunctional states of a photoreceptor protein. Structure 6, 863–872 (2008)CrossRefGoogle Scholar
  32. 32.
    Puklin-Faucher E., Gao M., Schulten K., Vogel V.: How the headpiece hinge angle is opened: new insights into the dynamics of integrin activation. J. Cell Biol. 175(2), 349–360 (2006)PubMedCrossRefGoogle Scholar
  33. 33.
    Wriggers W., Mehler E., Pitici F., Weinstein H., Schulten K.: Structure and dynamics of calmodulin in solution. Biophys. J. 74(4), 1622–1639 (1998)PubMedADSGoogle Scholar
  34. 34.
    Sheng Q., Schulten K., Pidgeon C.: Molecular-dynamics simulation of immobilized artificial membranes. J. Phys. Chem. 99(27), 11018–11027 (1995)CrossRefGoogle Scholar
  35. 35.
    Evans E., Ritchie K.: Dynamic strength of molecular adhesion bonds. Biophys. J. 72(4), 1541–1555 (1997)PubMedCrossRefGoogle Scholar
  36. 36.
    Merkel R., Nassoy P., Leung A., Ritchie K., Evans E.: Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy. Nature 397(6714), 50–53 (1999)PubMedCrossRefADSGoogle Scholar
  37. 37.
    Lee S., Mandic J., Vliet K.J.: Chemomechanical mapping of ligand–receptor binding kinetics on cells. Proc. Natl. Acad. Sci. USA 104(23), 9609–9614 (2007)PubMedCrossRefADSGoogle Scholar
  38. 38.
    Hinterdorfer P., Baumgartner W., Gruber H.J., Schilcher K., Schindler H.: Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc. Natl. Acad. Sci. USA 93(8), 3477–3481 (1996)PubMedCrossRefADSGoogle Scholar
  39. 39.
    Stroh C.M., Ebner A., Geretschlager M., Freudenthaler G., Kienberger F., Kamruzzahan A.S.M., Smith-Gil S.J., Gruber H.J., Hinterdorfer P.: Simultaneous topography and recognition Imaging using force microscopy. Biophys. J. 87(3), 1981–1990 (2004)PubMedCrossRefADSGoogle Scholar
  40. 40.
    Vliet K.J., Hinterdorfer P.: Probing drug–cell interactions. Nano Today 1(3), 18–25 (2006)CrossRefGoogle Scholar
  41. 41.
    Walton E.B., Van Vliet K.J.: Equilibration of experimentally determined protein structures for molecular dynamics simulation. Phys. Rev. E 74(6), 061901 (2006)CrossRefADSGoogle Scholar
  42. 42.
    Evans E.: Looking inside molecular bonds at biological interfaces with dynamic force spectroscopy. Biophys. Chem. 82, 83–87 (1999)PubMedCrossRefGoogle Scholar
  43. 43.
    McCammon J.A., Gelin B.R., Karplus M.: Dynamics offolded proteins. Nature 267, 585–590 (1977)PubMedCrossRefADSGoogle Scholar
  44. 44.
    McCammon J.A., Karplus M.: Simulation of protein dynamics. Annu. Rev. Phys. Chem. 31, 29–45 (1980)CrossRefGoogle Scholar
  45. 45.
    Craig D., Gao M., Schulten K., Vogel V.: Structural insights into how the MIDAS ion stabilizes integrin binding to an RGD peptide under force. Structure 12(11), 2049–2058 (2004)PubMedCrossRefGoogle Scholar
  46. 46.
    Isralewitz B., Izrailev S., Schulten K.: Binding pathway of retinal to bacterio-opsin: a prediction by molecular dynamics simulations. Biophys. J. 73(6), 2972–2979 (1997)PubMedGoogle Scholar
  47. 47.
    Kosztin D., Izrailev S., Schulten K.: Unbinding of retinoic acid from its receptor studied by steered molecular dynamics. Biophys. J. 76(1), 188–197 (1999)PubMedGoogle Scholar
  48. 48.
    Curcio R., Caflisch A., Paci E.: Change of the unbinding mechanism upon a mutation: a molecular dynamics study of an antibody–hapten complex. Protein Sci. 14(10), 2499–2514 (2005)PubMedCrossRefGoogle Scholar
  49. 49.
    Paci E., Caflisch A., Pluckthun A., Karplus M.: Forces and energetics of hapten-antibody dissociation: a biased molecular dynamics simulation study. J. Mol. Biol. 314(3), 589–605 (2001)PubMedCrossRefGoogle Scholar
  50. 50.
    Krishnan, R., Walton, E.B., Van Vliet, K.J.: in review (2008)Google Scholar
  51. 51.
    Mendenhall, W., Beaver, R.J., Beaver, B.M.: Introduction to Probability and Statistics. 12th ed., Thomson Higher Education, Belmont, CA (2006)Google Scholar
  52. 52.
    Chaturvedi S., Ocxhendorf J.: Global environmental impacts due to concrete and steel. Struct. Eng. Int. 14(3), 198–200 (2004)CrossRefGoogle Scholar
  53. 53.
    Ulm F.J., Constantinides G., Heukamp F.H.: Is concrete a poromechanics material?—a multiscale investigation of poroelastic properties. Mater. Struct. 37(265), 43–58 (2004)CrossRefGoogle Scholar
  54. 54.
    Jennings H.M., Thomas J.J., Gevrenov J.S., Constantinides G., Ulm F.J.: A multi-technique investigation of the nanoporosity of cement paste. Cem. Concr. Res. 37(3), 329–336 (2007)CrossRefGoogle Scholar
  55. 55.
    Constantinides G., Ulm F.J.: The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling. Cem. Concr. Res. 34(1), 67–80 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations