Advertisement

Journal of Computer-Aided Materials Design

, Volume 14, Supplement 1, pp 95–101 | Cite as

Analytical results for the plectonemic response of supercoiled DNA

  • Nicolas Clauvelin
  • Basile Audoly
  • Sébastien Neukirch
Article

Abstract

The DNA molecule is modeled as an elastic rod with bending and twisting rigidities, subjected to external tension and twist applied at one end, the other end being clamped. We study the plectonemic equilibrium of such a rod, taking into account the impenetrability constraint. Numerical solutions of this boundary value problem have previously shown that purely elastic models can reproduce the supercoiling response of the DNA molecule. Using a variational approach, we derive analytical formulae for the elastic response of the filament, and extend former numerical results.

Keywords

DNA supercoiling Twist storing polymer Elastic rods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ritort F. (2006). Single-molecule experiments in biological physics. J. Phys-Condens. Matt. 18(8): R531–R583 CrossRefGoogle Scholar
  2. 2.
    Charvin G., Allemand J.-F., Strick T., Bensimon V. and Croquette V. (2004). Twisting DNA: single molecule studies. Contemp Phys. 45(5): 383–406 CrossRefGoogle Scholar
  3. 3.
    Bustamante C., Mascosko J.C. and Wuite G.J.L. (2000). Grabbing the cat by the tails: manipulating molecules one by one. Nat. Rev. Mol. Cell Biol. 1(2): 130–136 CrossRefGoogle Scholar
  4. 4.
    Abels J.A., Moreno-Herrero F., Dekker C., Dekker N.H. and van der Heijden T. (2005). Single-molecule measurements of the persistence length of double-stranded RNA. Biophys. J. 88: 2737–2744 CrossRefGoogle Scholar
  5. 5.
    Smith S.B., Finzi L. and Bustamante C. (1992). Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258(5085): 1122–1126 CrossRefGoogle Scholar
  6. 6.
    Strick T.R., Allemand J.F., Bensimon D., Bensimon A. and Croquette V. (1996). The elasticity of a single supercoiled DNA molecule. Science 271(5257): 1835–1837 CrossRefGoogle Scholar
  7. 7.
    Manning G.S. (1969). Limiting laws and counterion condensation in polyelectrolyte solutions-I: colligative properties. J. Chem. Phys. 51(3): 924–933 CrossRefGoogle Scholar
  8. 8.
    Thompson J.M.T. and van der Heijden G.H.M. (2000). Helical and localised buckling in twisted rods: a unified analysis of the symmetric case. Nonlinear Dynam. 21: 71–99 CrossRefGoogle Scholar
  9. 9.
    Neukirch S. and van der Heijden G.H.M. (2002). Geometry and mechanics of uniform n-plies: from engineering ropes to biological filaments. J. Elasticity. 69(1): 41–72 CrossRefGoogle Scholar
  10. 10.
    Neukirch S. (2004). Extracting DNA twist rigidity from experimental supercoiling data. Phys. Rev. Lett. 93(19): 198107 CrossRefGoogle Scholar
  11. 11.
    Strick T., Dessinges M.N., Charvin G., Dekker N.H., Allemand J.F., Bensimon D. and Croquette V. (2003). Stretching of macromolecules and proteins. Rep. Prog. Phys. 66(1): 1–45 CrossRefGoogle Scholar
  12. 12.
    Stigter D. (1975). The charged colloidal cylinder with a gouy double layer. J. Colloid Interf. Sci. 53(2): 296–306 CrossRefGoogle Scholar
  13. 13.
    Ubbink J. and Odjik T. (1999). Electrostatic-undalotory theory of plectonemically supercoiled DNA. Biophys. J. 76(5): 2502–2519 CrossRefGoogle Scholar
  14. 14.
    Chapot D., Bocquet L. and Trizac E. (2004). Interaction between charged anisotropic macromolecules: application to rod-like polyelectrolytes. J. Chem. Phys. 120(8): 3969–3982 CrossRefGoogle Scholar
  15. 15.
    Rybenkov V.V., Vologodskii A.V. and Cozzarelli N.R. (1997). The effect of ionic conditions on DNA helical repeat, effective diameter and free energy of supercoiling. Nucleic Acids Res. 25(7): 1412–1418 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Nicolas Clauvelin
    • 1
  • Basile Audoly
    • 2
  • Sébastien Neukirch
    • 2
  1. 1.UMR 7190, Institut Jean le Rond d’AlembertUPMC Univ Paris 06 and CNRSParisFrance
  2. 2.UMR 7190, Institut Jean le Rond d’AlembertCNRS and UPMC Univ Paris 06ParisFrance

Personalised recommendations