Journal of Computer-Aided Materials Design

, Volume 14, Issue 3, pp 337–347

Large-scale quantum mechanical simulations of high-Z metals

  • L. H. Yang
  • Randolph Q. Hood
  • J. E. Pask
  • J. E. Klepeis


High-Z metals constitute a particular challenge for large-scale ab initio electronic-structure calculations, as they require high resolution due to the presence of strongly localized states and require many eigenstates to be computed due to the large number of electrons and need to accurately resolve the Fermi surface. Here, we report recent findings on high-Z metals, using an efficient massively parallel planewave implementation on some of the largest computational architectures currently available. We discuss the particular architectures employed and methodological advances required to harness them effectively. We present a pair-correlation function for U, calculated using quantum molecular dynamics, and discuss relaxations of Pu atoms in the vicinity of defects in aged and alloyed Pu. We find that the self-irradiation associated with aging has a negligible effect on the compressibility of Pu relative to other factors such as alloying.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hohenberg P. and Kohn W. (1964). Inhomogeneous electron gas. Phys. Rev. 136: B864–B871 CrossRefGoogle Scholar
  2. 2.
    Kohn W. and Sham L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev. 140: A1133–1138 CrossRefGoogle Scholar
  3. 3.
    Pickett W.E. (1989). Pseudopotential methods in condensed matter applications. Comput. Phys. Rep. 9(3): 115–197 CrossRefGoogle Scholar
  4. 4.
    Beck T.L. (2000). Real-space mesh techniques in density-functional theory. Rev. Mod. Phys. 72(4): 1041–1080 CrossRefGoogle Scholar
  5. 5.
    Torsti T., Eirola T., Enkovaara J., Hakala T., Havu P., Havu V., Höynälänmaa T., Ignatius J., Lyly M., Makkonen I., Rantala T.T., Ruokolainen J., Ruotsalainen K., Räsänen E., Saarikoski H. and Puska M.J. (2006). Three real-space discretization techniques in electronic structure calculations. phys. stat. sol. (B) 243(5): 1016–1053 CrossRefGoogle Scholar
  6. 6.
    Pask J.E. and Sterne P.A. (2005). Finite element methods in ab initio electronic structure calculations. Model. Simul. Mater. Sci. Eng. 13(3): R71–R96 CrossRefGoogle Scholar
  7. 7.
    Vanderbilt D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41(11): 7892–7895 CrossRefGoogle Scholar
  8. 8.
    Rappe A.M., Rabe K.M., Kaxiras E. and Joannopoulos J.D. (1990). Optimized pseudopotentials. Phys. Rev. B 41(2): 1227–1230 CrossRefGoogle Scholar
  9. 9.
    Lin J.S., Qteish A., Payne M.C. and Heine V. (1993). Optimized and transferable nonlocal separable ab initio pseudopotentials. Phys. Rev. B 47(8): 4174–4180 CrossRefGoogle Scholar
  10. 10.
    Gygi F. (1992). Adaptive Riemannian metric for plane-wave electronic-structure calculations. Europhys. Lett. 19(7): 617–622 CrossRefGoogle Scholar
  11. 11.
    Devenyi A., Cho K., Arias T.A. and Joannopoulos J.D. (1994). Adaptive Riemannian metric for all-electron calculations. Phys. Rev. B 49(19): 13373–13376 CrossRefGoogle Scholar
  12. 12.
    Hamann D.R. (1995). Band-structure in adaptive curvilinear coordinates. Phys. Rev. B 51(15): 9508–9514 CrossRefGoogle Scholar
  13. 13.
    Blöchl P.E. (1994). Projector augmented-wave method. Phys. Rev. B 50(24): 17953–17979 CrossRefGoogle Scholar
  14. 14.
    Goedecker S., Boulet M. and Deutsch T. (2003). An efficient 3-dim FFT for plane wave electronic structure calculations on massively parallel machines composed of multiprocessor nodes. Comput. Phys. Commun. 154(2): 105–110 CrossRefGoogle Scholar
  15. 15.
    Canning A. and Raczkowski D. (2005). Scaling first-principles plane-wave codes to thousands of processors. Comput. Phys. Commun. 169(1–3): 449–453 CrossRefGoogle Scholar
  16. 16.
    Skylaris C.K., Haynes P.D., Mostofi A.A. and Payne M.C. (2005). Introducing ONETEP: Linear scaling density functional simulations on parallel computers. J. Chem. Phys. 122(8): 084119 CrossRefGoogle Scholar
  17. 17.
    Gygi, F., Draeger, E.W., Schulz, M., de Supinski, B.R., Gunnels, J.A., Austel, V., Sexton, J.C., Franchetti, F., Kral, S., Ueberhuber, C.W., Lorenz, J.: Large-scale electronic structure calculations of high-Z metals on the BlueGene/L platform. In Proceedings of Supercomputing 2006. International Conference on High Performance Computing, Network, Storage, and Analysis, 2006. 2006 Gordon Bell Prize winner (Peak Performance)Google Scholar
  18. 18.
    See, e.g., Scholar
  19. 19.
    See, e.g., Scholar
  20. 20.
    Teter M.P., Payne M.C. and Allan D.C. (1989). Solution of Schrödinger’s equation for large systems. Phys. Rev. B 40: 12255 CrossRefGoogle Scholar
  21. 21.
    Yang, L. H.: Advanced atomic-level materials design. In: Koniges A. E. (ed.) Industrial Strength Parallel Computing, vol. X, 297 p. Morgan Kaufmann, 2000Google Scholar
  22. 22.
    See, e.g., Scholar
  23. 23.
    Söderlind P. (2002). First-principles elastic and structural properties of uranium metal. Phys. Rev. B 66(8): 085113 CrossRefGoogle Scholar
  24. 24.
    Heathman S., Idiri M., Lander G.H., Lander J.M., Wills J.M., Lawson A.C., Lindbaum A. and Bihan T. (2003). Structural behavior of alpha-uranium with pressures to 100 GPa. Phys. Rev. B 67(13): 134102 CrossRefGoogle Scholar
  25. 25.
    Katz J.J., Seaborg G.T. and Morss L.R. (1986). The Chemistry of the Actinide Elements. Chapman and Hall, London Google Scholar
  26. 26.
    Brooks M.S.S., Johansson B. and Skriver H.L. (1984). Electronic structure and bulk ground state properties of the actinides. In: Freeman, A.J. and Lander, G.H. (eds) Handbook on the Physics and Chemistry of the Actinides., North-Holland, Amsterdam Google Scholar
  27. 27.
    Söderlind P. (1998). Theory of the crystal structures of cerium and the light actinides. Adv. Phys. 47(6): 959 CrossRefGoogle Scholar
  28. 28.
    Perdew J.P., Burke K. and Ernzerhof M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18): 3865–3868 CrossRefGoogle Scholar
  29. 29.
    Troullier N. and Martins J.L. (1991). Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43(3): 1993 CrossRefGoogle Scholar
  30. 30.
    Yoo C.-S., Cynn H. and Söderlind P. (1998). Phase diagram of uranium at high pressures and temperatures. Phys. Rev. B 57(17): 10359 CrossRefGoogle Scholar
  31. 31.
    Nose S. (1984). A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys. 81(1): 511 CrossRefGoogle Scholar
  32. 32.
    Hoover G.H. (1985). Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31(3): 1695 CrossRefGoogle Scholar
  33. 33.
    Yoo C.-S., Akella J. and Moriarty J.A. (1993). High-pressure melting temperatures of uranium: Laser-heating experiments and theoretical calculations. Phys. Rev. B 48(21): 15529 CrossRefGoogle Scholar
  34. 34.
    Moriarty J.A. (1990). Analytic representation of multi-ion interatomic potentials in transition-metals. Phys. Rev. B 42(3): 1609 CrossRefGoogle Scholar
  35. 35.
    Wick O.J. (ed.) (1980). Plutonium Handbook: A Guide to the Technology. American Nuclear Society, La Grange Park Google Scholar
  36. 36.
    Skriver H.L. (1984). The LMTO Method. Springer, Berlin Google Scholar
  37. 37.
    Doloffre, P.: Ph.D Thesis. de l’universite Paris XI Orsay (1997)Google Scholar
  38. 38.
    Sadigh B. and Wolfer W.G. (2005). Gallium stabilization of δ-Pu: Density-functional calculations. Phys. Rev. B 72(20): 205122 CrossRefGoogle Scholar
  39. 39.
    Kokalj, A.: Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comp. Mater. Sci. 28(2), 155–168 (2003). Code available from Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • L. H. Yang
    • 1
  • Randolph Q. Hood
    • 1
  • J. E. Pask
    • 1
  • J. E. Klepeis
    • 1
  1. 1.Lawrence Livermore National LaboratoryUniversity of CaliforniaLivermoreUSA

Personalised recommendations