Journal of Computer-Aided Materials Design

, Volume 14, Issue 1, pp 167–174 | Cite as

Discrete size series of CdSe quantum dots: a combined computational and experimental investigation

  • M. Yu
  • G. W. Fernando
  • R. Li
  • F. Papadimitrakopoulos
  • N. Shi
  • R. RamprasadEmail author
Original Paper


Ab initio computational studies were performed for CdSe nanocrystals (NCs) over a wide variety of sizes ranging from 8 to 150 atoms in conjunction with recent experimental work. The density functional based calculations indicate substantial relaxations. Changes in coordination of surface atoms were found to play a crucial role in determining the NC stability and optical properties. While optimally (threefold) coordinated surface atoms resulted in stable closed-shell structures with large optical gaps, sub-optimal coordination gave rise to lower stability and negligible optical gaps. These computations are in qualitative agreement with recent chemical etching experiments suggesting that closed shell NCs contribute strongly to photoluminescence quantum yield while clusters with nonoptimal surface coordination do not.


Semiconductor quantum dots Cadmium compounds Ab initio calculation Energy gap Photoluminescence Surface structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Murray C.B., Kagan C.R., Bawendi M.G. (2000). Annu. Rev. Mater. Sci. 30: 545CrossRefGoogle Scholar
  2. 2.
    Alivisatos A.P. (1996). J. Phys. Chem. 100: 13226CrossRefGoogle Scholar
  3. 3.
    Chan W.CW., Maxwell D.J., Gao X., Bailey R.E., Han M., Nie S. (2002). Curr. Opin. Biotechnol. 13: 40CrossRefGoogle Scholar
  4. 4.
    Han M., Gao X., Su J.Z., Nie S. (2001). Nat. Biotechnol. 19: 631CrossRefGoogle Scholar
  5. 5.
    Klimov V.I., Mikhailovsky A.A., Xu S., Malko A., Hollingsworth J.A., Leatherdale C.A., Eisler H.J. Bawendi M.G. (2000). Science 290, 314CrossRefGoogle Scholar
  6. 6.
    Ispasoiu R.G., Lee J., Papadimitrakopoulos F., Goodson T. III (2001). Chem. Phys. Lett. 340: 7CrossRefGoogle Scholar
  7. 7.
    Ispasoiu R.G., Jin Y., Lee J., Papadimitrakopoulos F., Goodson T. III (2002). Nano Lett. 2: 127CrossRefGoogle Scholar
  8. 8.
    Huynh W.U., Dittmer J.J., Alivisatos A.P. (2002). Science 295: 2425CrossRefGoogle Scholar
  9. 9.
    Peng X., Wickham J., Alivisatos A.P. (1998). J. Am. Chem. Soc. 120: 5343CrossRefGoogle Scholar
  10. 10.
    Talapin D.V., Rogach A.L., Kornowski A., Haase M., Weller H. (2001). Nano. Lett. 1: 207CrossRefGoogle Scholar
  11. 11.
    Li R., Lee J., Yang B., Horspool D.N., Aindow M., Papadimitrakopoulos F. (2005). J. Am. Chem. Soc. 127: 2524CrossRefGoogle Scholar
  12. 12.
    Li R., Lee J., Kang D., Luo Z., Aindow M., Papadimitrakopoulos F. (2006). Adv. Funct. Mater. 16: 345CrossRefGoogle Scholar
  13. 13.
    Talapin D.V., Rogach A.L., Shevchenko E.V., Kornowski A., Haase M., Weller H. (2002). J. Am. Chem. Soc. 124: 5782CrossRefGoogle Scholar
  14. 14.
    Sarkar P., Springborg M. (2003). Phys. Rev. B 68: 235409CrossRefGoogle Scholar
  15. 15.
    Rabani E. (2001). J. Chem. Phys. 115: 1493CrossRefGoogle Scholar
  16. 16.
    Eichkorn K., Alrichs R. (1998). Chem. Phys. Lett. 288: 235CrossRefGoogle Scholar
  17. 17.
    Wang L.W., Zunger A. (1996). Phys. Rev. B 53: 9579CrossRefGoogle Scholar
  18. 18.
    Pokrant S., Whaley K.B. (1999). Eur. Phys. J. D 6: 255CrossRefGoogle Scholar
  19. 19.
    Puzder A., Williamson A.J., Gygi F., Galli G. (2004). Phys. Rev. Lett. 92: 217401CrossRefGoogle Scholar
  20. 20.
    Kasuya A., et al. (2004). Nature 3: 99CrossRefGoogle Scholar
  21. 21.
    Troparevsky M.C., Kronik L., Chelikowsky J.R. (2002). Phys. Rev. B 65: 033311CrossRefGoogle Scholar
  22. 22.
    Martin R. (2004) Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, New YorkGoogle Scholar
  23. 23.
    Soler J.M., Artacho E., Gale J., Garcia A., Junquera J., Ordejon P., Sanchez-Portal D. (2002). J. Phys.: Condens. Matter 14: 2745CrossRefGoogle Scholar
  24. 24.
    Troullier N., Martins J.L. (1991). Phys. Rev. B 43: 1993CrossRefGoogle Scholar
  25. 25.
    Zakharov O., Rubio A., Blasé X., Cohen M.L., Louie S.G. (1994). Phys. Rev. B 50: 10780CrossRefGoogle Scholar
  26. 26.
    Hellwege, K.-H., Madelung, O.: Numerical Data and Functional Relationships in Science and Technology, Landolt-Bornstein, New Series, Group III, vol. 17a, 22a. Springer, Berlin Heidelberg, New York (1982)Google Scholar
  27. 27.
    Brus L.E. (1986). J. Phys. Chem. 90: 2555CrossRefGoogle Scholar
  28. 28.
    Peng Z.A., Peng X. (2002). J. Am. Chem. Soc. 124: 3343CrossRefGoogle Scholar
  29. 29.
    Soloviev V.N., Eichhöfer A., Fenske D., Banin U. (2000). J. Am. Chem. Soc. 122: 2673CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • M. Yu
    • 1
  • G. W. Fernando
    • 1
  • R. Li
    • 2
  • F. Papadimitrakopoulos
    • 2
  • N. Shi
    • 3
  • R. Ramprasad
    • 3
    Email author
  1. 1.Department of PhysicsUniversity of ConnecticutStorrsUSA
  2. 2.Polymer Program and Department of ChemistryUniversity of ConnecticutStorrsUSA
  3. 3.Department of Chemical, Materials and Biomolecular EngineeringUniversity of ConnecticutStorrsUSA

Personalised recommendations