Advertisement

Journal of Computer-Aided Materials Design

, Volume 14, Issue 1, pp 133–139 | Cite as

Dielectric properties of nanoscale multi-component systems: A first principles computational study

  • N. Shi
  • R. RamprasadEmail author
Original Paper

Abstract

A new method has been developed within the framework of density functional theory to aid in the study of the dielectric properties of multi-component systems, with explicit treatment of surface and interface effects. Specially, we have determined the position dependent dielectric constant profiles for Si–SiO2 and SiO2-polymer systems. We find that at regions close to surfaces and interfaces, the dielectric constant is enhanced compared to the corresponding bulk values. In interior regions, the dielectric constant approaches the corresponding bulk values. The calculated optical and static dielectric constant values of these systems are in excellent agreement with experimental results, and other more involved computational treatments.

Keywords

Local dielectric Permitivity Density functional theory Heterostructures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rao Y., Wong C.P. (2004) Material characterization of a high-dielectric-constant polymer-ceramic composite for embedded capacitor for RF applications. J. Appl. Polym. Sci. 92: 2228CrossRefGoogle Scholar
  2. 2.
    Murugarai P., Mainwaring D., Mora-Huertas N. (2005) Dielectric enhancement in polymer-nanoparticle composites through interphase polarizability. J. Appl. Phys. 98: 054304CrossRefGoogle Scholar
  3. 3.
    Wilk G.D., Wallace R.M., Anthony J.M. (2001) High-κ gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89: 5243CrossRefGoogle Scholar
  4. 4.
    Perkins C.M., Triplett B.B., Mclntyre P.C., Saraswat K.C., Haukka S., Touminen M. (2000) Electrical and materials properties of ZrO2 gate dielectrics grown by atomic layer chemical vapor deposition. Appl. Phys. Lett. 78: 2357CrossRefGoogle Scholar
  5. 5.
    Chang H.S., et al. (2002) Measurement of the physical and electrical thickness of ultrathin gate oxides. J. Vac. Sci. Technol. B. 20: 1836CrossRefGoogle Scholar
  6. 6.
    Rignanese G.-M., Detraux F., Gonze X., Pasquarello A. (2001) First-principles study of dynamical and dielectric properties of tetragonal zirconia. Phys. Rev. B 64: 134301CrossRefGoogle Scholar
  7. 7.
    Zhao X.Y., Vanderbilt D. (2002) First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide. Phys. Rev. B 65: 233106CrossRefGoogle Scholar
  8. 8.
    King-Smith R.D., Vanderbilt D. (1993) Theory of polarization of crystalline solids. Phys. Rev. B 47: 1651CrossRefGoogle Scholar
  9. 9.
    Ramprasad R., Shi N. (2005) Dielectric properties of nanoscale HfO2 slabs. Phys. Rev. B 72: 052107CrossRefGoogle Scholar
  10. 10.
    Martin R. (2004) Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, New YorkGoogle Scholar
  11. 11.
    Soler J.M., Artacho E., Gale J., Garcia A., Junquera J., Ordejon P., Sanchez-Portal D. (2002) The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 14: 2745CrossRefGoogle Scholar
  12. 12.
    Shi N., Ramprasad R. (2005) Dielectric properties of ultrathin SiO2 slabs. Appl. Phys. Lett. 87: 262102CrossRefGoogle Scholar
  13. 13.
    Shi N., Ramprasad R. (2006) Atomic-scale dielectric permittivity profiles in slabs and multilayers. Phys. Rev. B 74: 045318CrossRefGoogle Scholar
  14. 14.
    Wolf, W.L., Stanley, S.B., McCarthy, K.A.: American Institute of Physics Handbook, p.24. McGraw-Hill, New York (1963)Google Scholar
  15. 15.
    Gervais F., Piriou B. (1975) Temperature dependence of transverse and longitudinal optic modes in the α and β phases of quartz. Phys. Rev. B 11: 3944CrossRefGoogle Scholar
  16. 16.
    Giustino F., Umari P., Pasquarello A. (2003) Dielectric Discontinuity at Interfaces in the Atomic-Scale Limit: Permittivity of Ultrathin Oxide Films on Silicon. Phys. Rev. Lett. 91: 267601CrossRefGoogle Scholar
  17. 17.
    Perkins C.M., Triplett B.B., Mclntyre P.C., Saraswat K.C., Haukka S., Tuominen M. (2001) Electrical and materials properties of ZrO2 gate dielectrics grown by atomic layer chemical vapor deposition. Appl. Phys. Lett. 78: 2357CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, Institute of Materials ScienceUniversity of ConnecticutStorrsUSA

Personalised recommendations