Journal of Computer-Aided Materials Design

, Volume 13, Issue 1–3, pp 111–129 | Cite as

Born–Oppenheimer Interatomic Forces from Simple, Local Kinetic Energy Density Functionals

  • V. V. Karasiev
  • S. B. Trickey
  • Frank E. Harris


Rapid calculation of Born–Oppenheimer (B–O) forces is essential for driving the so-called quantum region of a multi-scale molecular dynamics simulation. The success of density functional theory (DFT) with modern exchange-correlation approximations makes DFT an appealing choice for this role. But conventional Kohn–Sham DFT, even with various linear-scaling implementations, really is not fast enough to meet the challenge of complicated chemo-mechanical phenomena (e.g. stress-induced cracking in the presence of a solvent). Moreover, those schemes involve approximations that are difficult to check practically or to validate formally. A popular alternative, Car-Parrinello dynamics, does not guarantee motion on the B–O surface. Another approach, orbital-free DFT, is appealing but has proven difficult to implement because of the challenge of constructing reliable orbital-free (OF) approximations to the kinetic energy (KE) functional. To be maximally useful for multi-scale simulations, an OF-KE functional must be local (i.e. one-point). This requirement eliminates the two-point functionals designed to have proper linear-response behavior in the weakly inhomogeneous limit. In the face of these difficulties, we demonstrate that there is a way forward. By requiring only that the approximate functional deliver high-quality forces, by exploiting the “conjointness” hypothesis of Lee, Lee, and Parr, by enforcing a basic positivity constraint, and by parameterizing to a carefully selected, small set of molecules we are able to generate a KE functional that does a good job of describing various H q Si m O n clusters as well as CO (providing encouraging evidence of transferability). In addition to that positive result, we discuss several major negative results. First is definitive proof that the conjointness hypothesis is not correct, but nevertheless is useful. The second is the failure of a considerable variety of published KE functionals of the generalized gradient approximation type. Those functionals yield no minimum on the energy surface and give completely incorrect forces. In all cases, the problem can be traced to incorrect behavior of the functionals near the nuclei. Third, the seemingly obvious strategy of direct numerical fitting of OF-KE functional parameters to reproduce the energy surface of selected molecules is unsuccessful. The functionals that result are completely untransferable.


density functional theory forces orbital-free kinetic energy conjointness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hohenberg P., Kohn W. (1964). Phys. Rev. 136:B864–B871MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    Jones R.O., Gunnarsson O. (1989). Rev. Mod. Phys. 61:689CrossRefADSGoogle Scholar
  3. 3.
    Parr R.G., Yang W. (1989). Density Functional Theory of Atoms and Molecules, Oxford, NY,Google Scholar
  4. 4.
    Dreizler R.M., Gross E.K.U. (1990). Density Functional Theory. Springer, BerlinMATHGoogle Scholar
  5. 5.
    Kryachko E.S., Ludeña E.V. (1990). Energy Density Functional Theory of Many-Electron Systems. Kluwer, DordrechtGoogle Scholar
  6. 6.
    Trickey, S.B., (spec. ed.), Density Functional Theory for Many-Fermion Systems, Adv. Quant. Chem. 21, Academic, San Diego, 1990.Google Scholar
  7. 7.
    Gross E.K.U., Dreizler R.M. (eds) (1995). Density Functional Theory. Plenum, NYMATHGoogle Scholar
  8. 8.
    Seminario J.M., Politzer P. (eds) (1995). Modern Density Functional Theory. Elsevier, AmsterdamGoogle Scholar
  9. 9.
    Chong D.P. (eds) (1995). Recent Advances in Density Functional Methods. World Scientific, SingaporeMATHGoogle Scholar
  10. 10.
    Kohn W., Becke A.D., Parr R.G. (1996). J. Phys. Chem. 100:12974CrossRefGoogle Scholar
  11. 11.
    Seminario J.M. (eds) (1996). Recent Developments and Applications of Modern Density Functional Theory. Elsevier, AmsterdamGoogle Scholar
  12. 12.
    Nalewajski R.F. (eds) (1996). Density Functional Theory. Springer, BerlinGoogle Scholar
  13. 13.
    Eschrig H. The Fundamentals of Density Functional Theory, Teubner Texte für Physik 32, Teubner, Stuttgart and Leipzig, (1996).Google Scholar
  14. 14.
    Görling, A., Trickey, S.B., Gisdakis, P. and Rösch, N., in Topics in Organometallic Chemistry, vol. 4, P. Hoffmann, and J.M. Brown, eds. Springer, Berlin, 1999 109–63.Google Scholar
  15. 15.
    Koch W., Holthaussen M.C. (2001). A Chemist’s Guide to Density Functional Theory, Second Ed. Wiley VCH, WeinheimGoogle Scholar
  16. 16.
    Kohn W., Sham L.J. (1965). Phys. Rev. 140:A1133MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    Car R., Parrinello M. (1985). Phys. Rev. Lett. 55:2471PubMedCrossRefADSGoogle Scholar
  18. 18.
    Ludeña, E.V. and Karasiev, V.V., in Reviews of Modern Quantum Chemistry: a Celebration of the Contributions of Robert Parr, edited by K. D. Sen, World Scientific, Singapore, 2002, p. 612.Google Scholar
  19. 19.
    Levy M. (1979). Proc. Natl. Acad. Sci. USA 76:6062PubMedCrossRefADSGoogle Scholar
  20. 20.
    Chan G.K.-L., Handy N.C. (1999). Phys. Rev. A 59:2670CrossRefADSGoogle Scholar
  21. 21.
    Thomas L.H. (1927). Proc. Camb. Phil. Soc. 23:542MATHCrossRefGoogle Scholar
  22. 22.
    Fermi, E., Atti Accad. Nazl. Lincei 6 (1927) 602; Z. Phys. 48 (1928) 73.Google Scholar
  23. 23.
    Lieb E.H. (1981). Rev. Mod. Phys. 53:603MathSciNetCrossRefADSMATHGoogle Scholar
  24. 24.
    Teller E. (1962). Rev. Mod. Phys. 34:627MATHCrossRefADSGoogle Scholar
  25. 25.
    Von Weizsäcker C.F. (1935). Z. Phys. 96:431MATHCrossRefGoogle Scholar
  26. 26.
    Wang, Y.A. and Carter, E.A., Orbital-free Kinetic-energy Density Functional Theory, Chap. 5 in Theoretical Methods in Condensed Phase Chemistry, edited by S.D. Schwartz, Kluwer, NY, 2000, p. 117 and references therein.Google Scholar
  27. 27.
    Wang Y.A., Teter M.P. (1992). Phys. Rev. B 45:13196CrossRefADSGoogle Scholar
  28. 28.
    Foley, M. and Madden, P.A., Phys. Rev. B 53 (1996) 10589 and refs. therein.Google Scholar
  29. 29.
    García-González, P., Alvarellos, J.E. and Chacòn, E., Phys. Rev. A 57 (1998) 4192 and refs. therein.Google Scholar
  30. 30.
    Choly N., Kaxiras E. (2002). Sol. State. Commun. 121:281CrossRefADSGoogle Scholar
  31. 31.
    Private communication, Wang, Y.A., to VVK and SBT, July, 2005, and to be published.Google Scholar
  32. 32.
    Blanc X., Cancès E. J. Chem. Phys. 122 (2005) 214106Google Scholar
  33. 33.
    Hodges C.H. (1973). Can. J. Phys. 51:1428ADSGoogle Scholar
  34. 34.
    Perdew J.P. (1992). Phys. Lett. A 165:79CrossRefADSGoogle Scholar
  35. 35.
    Tal Y., Bader R.F.W. (1978). Int. J. Quantum Chem. S12:153Google Scholar
  36. 36.
    Bartolotti L.J., Acharya P.K. (1982). J. Chem. Phys. 77:4576CrossRefADSGoogle Scholar
  37. 37.
    Levy M., Ou-Yang H. (1988). Phys. Rev. A 38:625PubMedCrossRefADSGoogle Scholar
  38. 38.
    Ludeña E.V., Karasiev V., López-Boada R., Valderrama E., Maldonado J. (1999). J. Comp. Chem. 20:155CrossRefGoogle Scholar
  39. 39.
    Levy M., Perdew J.P., Sahni V. (1984). Phys. Rev. A 30:2745CrossRefADSGoogle Scholar
  40. 40.
    Herring C. (1986). Phys. Rev. A 34:2614PubMedCrossRefADSGoogle Scholar
  41. 41.
    Gál, T. and Nagy, A., J. Mol. Struct Theochem 501–502 (2000) 167.Google Scholar
  42. 42.
    Liu S., Parr R.G. (1997). Chem. Phys. Lett. 278:341CrossRefADSGoogle Scholar
  43. 43.
    Gál T. Phys. Rev. A 64 (2001) 062503.Google Scholar
  44. 44.
    Lee H., Lee C., Parr R.G. (1991). Phys. Rev. A 44:768PubMedCrossRefADSGoogle Scholar
  45. 45.
    Lacks D.J., Gordon R.G. (1994). J. Chem. Phys. 100:4446CrossRefADSGoogle Scholar
  46. 46.
    Lembarki A., Chermette H. (1994). Phys. Rev. A 50:5238CrossRefADSGoogle Scholar
  47. 47.
    Fuentealba P., Reyes O. (1995). Chem. Phys. Lett. 232:31CrossRefADSGoogle Scholar
  48. 48.
    Fuentealba P. (1997). J. Mol. Struct. (THEOCHEM) 390:1CrossRefGoogle Scholar
  49. 49.
    Tran F., Wesolowski T.A. (2002). Int. J. Quantum. Chem 89:441CrossRefGoogle Scholar
  50. 50.
    Becke A.D. (1986). J. Chem. Phys. 84:4524CrossRefADSGoogle Scholar
  51. 51.
    Perdew J.P., Burke K., Ernzerhof M. (1996). Phys. Rev. Lett. 77:3865PubMedCrossRefADSGoogle Scholar
  52. 52.
    DePristo A.E., Kress J.D. (1987). Phys. Rev. A 35:438PubMedCrossRefADSGoogle Scholar
  53. 53.
    Thakkar A.J. (1992). Phys. Rev. A 46:6920PubMedCrossRefADSGoogle Scholar
  54. 54.
    Slater J.C. (1951). Phys. Rev. 81:385MATHCrossRefADSGoogle Scholar
  55. 55.
    Slater J.C. (1951). Phys. Rev. 82:538CrossRefADSGoogle Scholar
  56. 56.
    Slater J.C. (1965). J. Chem. Phys. 43:S228MathSciNetCrossRefADSGoogle Scholar
  57. 57.
    Gáspár R. (1954). Acta Phys Hung. 3:263MATHCrossRefGoogle Scholar
  58. 58.
    Kohn W., Sham L.J. (1965). Phys. Rev. 140:A1133MathSciNetCrossRefADSGoogle Scholar
  59. 59.
    Tong B.Y., Sham L.J. (1966). Phys. Rev. 144:1CrossRefADSGoogle Scholar
  60. 60.
    Vosko S.H., Wilk L., Nusair M. (1980). Can. J. Phys. 58:1200ADSCrossRefGoogle Scholar
  61. 61.
    Ceperley D.M., Alder B.J. (1980). Phys. Rev. Lett. 45:566CrossRefADSGoogle Scholar
  62. 62.
    Schäfer A., Horn H., Ahlrichs R. (1992). J. Chem. Phys. 97:2571CrossRefADSGoogle Scholar
  63. 63.
    Schäfer A., Huber C., Ahlrichs R. (1994). J. Chem. Phys. 100:5829CrossRefADSGoogle Scholar
  64. 64.
    Taken from the Extensible Computational Chemistry Environment Basis Set Database, Version 02/25/04, Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory, Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352, USA, funded by the U.S. Department of Energy (contract DE-AC06-76RLO). See Scholar
  65. 65.
    Becke A.D. (1988). J. Chem. Phys. 88:2547CrossRefADSGoogle Scholar
  66. 66.
    Lebedev, V.I. and Laikov, D.N., Dokl. Akad. Nauk 366 (1999) 741 [Dokl. Math. 59 (1999) 477].Google Scholar
  67. 67.
    Computational Chemistry List (CCL) Archives: Scholar
  68. 68.
    Salvador P., Mayer I. (2004). J. Chem. Phys. 120:5046PubMedCrossRefADSGoogle Scholar
  69. 69.
    Karasiev, V.V., Ludeña, E.V. and Artemyev, A.N., Phys. Rev. A 62 (2000) 062510.Google Scholar
  70. 70.
    Korn G.A., Korn T.M. (1961). Mathematical Handbook for Scientists and Engineers. McGraw-Hill, NYMATHGoogle Scholar
  71. 71.
    Adamo C., Barone V. (2002). J. Chem. Phys. 116:5933CrossRefADSGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • V. V. Karasiev
    • 1
    • 2
  • S. B. Trickey
    • 1
  • Frank E. Harris
    • 1
    • 3
  1. 1.Quantum Theory Project, Departments of Physics and of ChemistryUniversity of FloridaGainesvilleUSA
  2. 2.Centro de QuímicaInstituto Venezolano de Investigaciones Científicas, IVICCaracasVenezuela
  3. 3.Department of PhysicsUniversity of UtahSalt Lake CityUSA

Personalised recommendations