Advertisement

Computational Design of Silicon Suboxides: Chemical and Mechanical Forces on the Atomic Scale

  • Anatoli KorkinEmail author
  • Rodney J. Bartlett
  • V. V. Karasiev
  • J. C. Greer
  • T. M. Henderson
  • Gennadi Bersuker
Article

Abstract

Silicon suboxides play an important role in different industrial applications, particularly in the form of the Si–SiO2 interface, which is one of the key elements in present day microelectronics and potentially in future nano-electronics as well. This paper focuses on the chemical and mechanical effects related to the existence of different oxidation states of Si atoms in SiO x systems with various Si:O composition and topology, such as O atoms in Si, the Si–SiO2 interface, and O vacancies in SiO2. We compare the stress–strain relation in SiO2 interfaces with (100), (111) and (110) surfaces, the relative stability of oxygen vacancies at different locations in Si–SiO2 layers and defects in Si and SiO2 crystals related to O migration. Our study is based on ab initio computations of molecular and periodic systems with both localized and plane wave basis sets.

Keywords

Chemical and mechanical stress Density functional theory Periodic systems Silicon suboxides Sio2 interfaces 

References

  1. 1.
    Fundamental Aspects of Silicon Oxidation (Springer Series in Materials Science), edited by Y.J. Chabal (Springer, Berlin, 2001).Google Scholar
  2. 2.
    Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices (NATO Science Series V. 47), edited by E. Garfunkel, E. Gusev and A. Vul’ (Kluwer, Dordrecht, 1998).Google Scholar
  3. 3.
    Kisa M., Minton T.K., Yang J.C. J. Appl. Phys., 97 (2005) 23520.Google Scholar
  4. 4.
    Bacıoğlu A., Kodolbaş A.O., Öktü Ö. (2005) Solar Energy Mater. Solar Cells. 89: 49CrossRefGoogle Scholar
  5. 5.
    Janssen R., Karrer U., Dimova-Malinovska D., Stutzmann M. J. Non-Crystal. Solids, 227–230 (1998) 1151.Google Scholar
  6. 6.
    Hinds, B.J., Wang, F., Wolfe, D.M., Hinkle, C.L. and Lucovsky, G., J. Non-Crystal. Solids, 227–230 (1998) 507.Google Scholar
  7. 7.
    Hamann D.R. (2000) Phys. Rev., B 61: 9899CrossRefADSGoogle Scholar
  8. 8.
    Bongiorno A., Pasquarello A. (2000) Phys. Rev. B 62: R16326CrossRefADSGoogle Scholar
  9. 9.
    Markovits, A. and Minot, C., in Ref. 2, p. 131.Google Scholar
  10. 10.
    Watanabe T., Ohdomari I. (2004) Appl. Surf. Sci. 237: 125ADSGoogle Scholar
  11. 11.
    Weldon M.K., Queeney K.T., Gurevich A.B., Chabal Y.J., Stefanov B.B., Raghavachari K. (1999) J. Vac. Sci. Technol., B 17: 1795CrossRefGoogle Scholar
  12. 12.
    Vasiliev I., Chelikowsky J.R., Martin R.M. (2002) Phys. Rev. B 65: 121302CrossRefADSGoogle Scholar
  13. 13.
    Karna, S.P., Pineda A.C., Shedd, W.M and Singaraju, B.K., Proc. Electrochem. Soc., 99 No.3 (1999) 161.; Karna, S.P., Kurtz, H.A., Shedd, W.M., Pugh, R.D. and Singaraju, B.K., IEEE Trans. Nuc. Sci., 46 (1999) 1544 .Google Scholar
  14. 14.
    Pasquarello, A., Hybertsen, M.S. and Car, R., Phys. Rev. Lett., 74 (1995) 1024; Phys. Rev., B 53 (1996) 10942; Appl. Phys. Lett., 68 (1996) 625; Appl. Surf. Sci., 104/105 (1996) 317.Google Scholar
  15. 15.
    Demkov, A.A., Sankey, O.F., Phys. Rev. Lett., 83 (1999) 2038; Demkov, A.A., Zhang X. and Drabold D.A., Phys. Rev., B 64 (2001) 125306.Google Scholar
  16. 16.
    Tit N. and Dharma-Wardana, M.W.C., J. Appl. Phys. 86 (1999) 1; Carrier, P., Lewis, L.J. and Dharma-Wardana, M.W.C., Phys. Rev., B 65 (2002) 165339.Google Scholar
  17. 17.
    Degoli, E. and Ossicinia, S. Surf. Sci. 470 (2000) 32; Optical Mater., 17 (2001) 95.Google Scholar
  18. 18.
    Kato K., Uda T., Terakura K. (1998) Phys. Rev. Lett., 80: 2000CrossRefADSGoogle Scholar
  19. 19.
    Akiyama, T. and Kageshima, H., Appl. Surf. Sci., 216 (2003) 270; Akiyama, T., Kageshima, H. and Ito, T., Jpn. J. Appl. Phys., 43 (2004) 7903.Google Scholar
  20. 20.
    Bongiorno A., Pasquarello A. (2005) J. Phys.: Condens. Matter 17, S2051CrossRefADSGoogle Scholar
  21. 21.
    Korkin A.A., Greer J., Bersuker G., Karasiev V., Bartlett R.J. Phys. Rev. B, 73 (2006) 165312.Google Scholar
  22. 22.
    Bersuker G., Barnett J., Moumen N., Foran B., Young C.D., Lysaght P., Peterson J., Lee B.H., Zeitzoff P.M., Huff H.R. (2004) Jpn. J. Appl. Phys. 43: 7899CrossRefADSGoogle Scholar
  23. 23.
    Giustino F., Bongiorno A., Pasquarello A. (2005) J. Phys.: Condens. Matter 17: S2065CrossRefADSGoogle Scholar
  24. 24.
    Perdew J.P., Zunger A. (1981) Phys. Rev. B 23: 5048CrossRefADSGoogle Scholar
  25. 25.
    Perdew J.P., Chevary J.A., Vosko S.H., Jackson K.A., Pederson M.R., Singh D.J., Fiolhais C. (1992) Phys. Rev. B 46: 6671CrossRefADSGoogle Scholar
  26. 26.
    Vienna ab initio simulation package (VASP); Version 4.4.5; http://cms.mpi.univie.ac.at/vasp/. See also Kresse, G. and Furthmüller, J., Comput. Mater. Sci., 6 (1996) 4136.Google Scholar
  27. 27.
    Spanish Initiative for Electronic Simulations with Thousands of Atoms (SIESTA); Version 1.3.; http://www.uam.es/departamentos/ciencias/fismateriac/siesta/. See also Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P. and Sánchez-Portal, D., J. Phys.: Condens. Matter, 14 (2002) 2745.Google Scholar
  28. 28.
    Topp W.C., Hopfield J.J. (1973) Phys. Rev. B 7: 1295CrossRefADSGoogle Scholar
  29. 29.
    Troullier N., Martins J.L. (1991) Phys. Rev. B 43: 1993CrossRefADSGoogle Scholar
  30. 30.
    Vanderbilt D. (1990) Phys. Rev. B 41: 7892CrossRefADSGoogle Scholar
  31. 31.
    Kresse G., Hafner J. (1994) J. Phys.: Condens. Matter 6: 8245CrossRefADSGoogle Scholar
  32. 32.
    Monkhorst H.J., Pack J.D. (1976) Phys. Rev. B 13: 5188MathSciNetCrossRefADSGoogle Scholar
  33. 33.
    Bartlett R.J. (1981) Ann. Rev. Phys. Chem. 32: 359CrossRefGoogle Scholar
  34. 34.
    Dunning, Jr., T.H., J. Chem. Phys. 90 (1989) 1007.; Woon, D.E. and Dunning, Jr., T.H., J. Chem. Phys., 93 (1993) 1358.Google Scholar
  35. 35.
    Brode S., Horn H., Ehrig M., Moldrup D., Rice J.E., Ahlrichs R. (1993) J. Comp. Chem. 14: 1142CrossRefGoogle Scholar
  36. 36.
    Bartlett, R.J. in Modern Electronic Structure Theory, Part I, edited by D.R. Yakorny (World Scientific, Singapore, 1995).Google Scholar
  37. 37.
    ACES II is a program product of the Quantum Theory Project, University of Florida. Stanton, J.F., Gauss, J., Watts, J.D., Nooijen, M., Oliphant, N., Perera, S.A., Szalay, P.G., Lauderdale, W.J., Kucharski, S.A., Gwaltney, S.R., Beck, S., Balková, A. Bernholdt, D.E., Baeck, K.K., Rozyczko, P., Sekino, H., Hober, C. and Bartlett, R.J. Integral packages included are VMOL (J. Almlöf and P.R. Taylor); VPROPS (P. Taylor) ABACUS; (T. Helgaker, H.J. Aa, P. Jensen, P. Jørgensen, J. Olsen, and P.R. Taylor).Google Scholar
  38. 38.
    Hehre W.J., Radom L., Schleyer P.v.R. (1986) Ab Initio Molecular Orbital Theory. Wiley, NY, p.298Google Scholar
  39. 39.
    Schlegel H.B. (1984) J. Phys. Chem. 88: 6254CrossRefGoogle Scholar
  40. 40.
    Ohishi K., Hattori T. (1994) Jpn. J. Appl. Phys. 33: L675CrossRefADSGoogle Scholar
  41. 41.
    Henderson, T.M., Greer J.C., Bersuker, G. Korkin, A. and Bartlett R.J., in Defects in Advanced High-k Dielectric Nano-Electronic Semiconductor Devices, edited by E. Gusev (Springer, Berlin 2006), p. 373.Google Scholar
  42. 42.
    Sulimov V.B., Sushko P.V., Edwards A.H., Shluger A.L., Stoneham A.M. (2002) Phys. Rev. B 66: 024108CrossRefADSGoogle Scholar
  43. 43.
    Nicklaw C.J., Lu Z.-Y., Fleetwood D.M., Schrimpf R.D., Pantelides S.T. (2002) IEEE Trans Nucl. Science 49: 2667CrossRefADSGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Anatoli Korkin
    • 1
    Email author
  • Rodney J. Bartlett
    • 2
  • V. V. Karasiev
    • 2
    • 3
  • J. C. Greer
    • 4
  • T. M. Henderson
    • 4
  • Gennadi Bersuker
    • 5
  1. 1.Nano & Giga SolutionsGilbertUSA
  2. 2.Quantum Theory ProjectUniversity of FloridaGainesvilleUSA
  3. 3.Centro de Química, Instituto Venezolano de Investigaciones CientificasIVICCaracasVenzuela
  4. 4.Tyndall National InstituteLee MaltingsCorkIreland
  5. 5.SEMATECHAustinUSA

Personalised recommendations