Journal of Bioeconomics

, Volume 19, Issue 1, pp 7–28 | Cite as

The environmental Kuznets curve after 25 years

  • David I. Stern


The environmental Kuznets curve (EKC) has been the dominant approach among economists to modeling aggregate pollution emissions and ambient concentrations over the last quarter century. Despite this, the EKC was criticized almost from the start and decomposition approaches have been more popular in other disciplines working on global climate change. More recently, convergence approaches to modeling emissions have become popular. This paper reviews the history of the EKC and alternative approaches. Applying an approach that synthesizes the EKC and convergence approaches, I show that convergence is important for explaining both pollution emissions and concentrations. On the other hand, economic growth has a strong positive effect on carbon dioxide, sulfur dioxide, and industrial greenhouse gas (GHG) emissions, but weaker effects on non-industrial GHG emissions and concentrations of particulates. Negative time effects are important for sulfur and industrial and non-industrial GHG emissions. Even for particulate concentrations, economic growth only reduces pollution at very high income levels. Future research should focus on developing and testing alternative theoretical models and investigating the non-growth drivers of pollution reduction.


Air pollution Economic growth Environmental Kuznets curve Convergence Climate change 

JEL Classification

Q53 Q56 



I thank my colleagues and students who collaborated on the empirical studies discussed in this paper: Reyer Gerlagh, Paul Burke, Luis Sanchez, Jeremy van Dijk, and Zeba Anjum. I also thank two anonymous referees for useful comments and Andreas Chai for inviting me to contribute to this special issue and participate in the workshop: ‘Managing the Transition to a Sustainable Economy’ at Griffith University.


  1. Aldy, J. E. (2005). An environmental Kuznets curve analysis of U.S. state-level carbon dioxide emissions. Journal of Environment and Development, 14, 48–72.CrossRefGoogle Scholar
  2. Aldy, J. E. (2006). Per capita carbon dioxide emissions: Convergence or divergence? Environmental and Resource Economics, 33(4), 533–555.CrossRefGoogle Scholar
  3. Anjum, Z., Burke, P. J., Gerlagh, R., & Stern, D. I. (2014). Modeling the emissions-income relationship using long-run growth rates. CCEP Working Papers, 1403.Google Scholar
  4. Antweiler, W., Copeland, B. R., & Taylor, M. S. (2001). Is free trade good for the environment? American Economic Review, 91, 877–908.CrossRefGoogle Scholar
  5. Arrow, K., Bolin, B., Costanza, R., Dasgupta, P., Folke, C., Holling, C. S., Jansson, B-O., Levin, S., Mäler, K.-G., Perrings, C., & Pimentel, D. (1995). Economic growth, carrying capacity, and the environment. Science, 268, 520–521.Google Scholar
  6. Azomahou, T., Laisney, F., & Van Nguyen, P. (2006). Economic development and \({\rm CO}_{2}\) emissions: A nonparametric panel approach. Journal of Public Economics, 90(6–7), 1347–1363.CrossRefGoogle Scholar
  7. Beckerman, W. (1992). Economic growth and the environment: Whose growth? Whose environment? World Development, 20, 481–496.CrossRefGoogle Scholar
  8. Blanco, G., Gerlagh, R., Suh, S., Barrett, J., de Coninck, H., Diaz Morejon, C. F., Mathur, R., Nakicenovic, N., Ahenkorah, A. O., Pan, J., Pathak, H., Rice, J., Richels, R., Smith, S. J., Stern, D. I., Toth, F. L., & Zhou, P. (2014). Drivers, trends and mitigation. In Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel, & J. C. Minx (Eds.), Climate change 2014: Mitigation of climate change. contribution of Working Group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge UK: Cambridge University Press.Google Scholar
  9. Boden, T. A., Marland, G., & Andres, R. J., (2013). Global, regional, and national fossil-fuel \(CO_{2}\) Emissions. Oak Ridge, TN: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy.Google Scholar
  10. Brock, W. A., & Taylor, M. S. (2010). The green Solow model. Journal of Economic Growth, 15, 127–153.CrossRefGoogle Scholar
  11. Burke, P. J., Shahiduzzaman, M., & Stern, D. I. (2015). Carbon dioxide emissions in the short run: The rate and sources of economic growth matter. Global Environmental Change, 33, 109–121.CrossRefGoogle Scholar
  12. Carson, R. T. (2010). The environmental Kuznets curve: Seeking empirical regularity and theoretical structure. Review of Environmental Economics and Policy, 4(1), 3–23.CrossRefGoogle Scholar
  13. Carson, R. T., Jeon, Y., & McCubbin, D. R. (1997). The relationship between air pollution and emissions: U.S. data. Environment and Development Economics, 2, 433–450.Google Scholar
  14. Chen, W.-J. (2016). Is the Green Solow Model valid for \({\rm CO}_{2}\) emissions in the European Union? Environmental and Resource Economics. doi: 10.1007/s10640-015-9975-0.
  15. Chow, G. C., & Li, J. (2014). Environmental Kuznets curve: Conclusive econometric evidence for \({\rm CO}_{2}\). Pacific Economic Review, 19(1), 1–7.CrossRefGoogle Scholar
  16. Clarke, L., Jiang, K., Akimoto, K., Babiker, M., Blanford, G., Fisher-Vanden, K., Hourcade, J.-C., Krey, V., Kriegler, E., Löschel, A., McCollum, D., Paltsev, S., Rose, S., Shukla, P. R., Tavoni, M., van der Zwaan, B. C. C., & van Vuuren, D. P. (2014). Assessing Transformation Pathways. In Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel, & J. C. Minx (Eds.), Climate change 2014: Mitigation of climate change. contribution of Working Group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press.Google Scholar
  17. Cole, M. (2004). Trade, the pollution haven hypothesis and environmental Kuznets Curve: Examining the linkages. Ecological Economics, 48, 71–81.CrossRefGoogle Scholar
  18. Copeland, B. R., & Taylor, M. S. (2004). Trade, growth, and the environment. Journal of Economic Literature, 42, 7–71.CrossRefGoogle Scholar
  19. Daly, H. E. (1993). The perils of free trade. Scientific American, 269, 50–57.CrossRefGoogle Scholar
  20. Dasgupta, S., Laplante, B., Wang, H., & Wheeler, D. (2002). Confronting the environmental Kuznets curve. Journal of Economic Perspectives, 16, 147–168.CrossRefGoogle Scholar
  21. Dobes, L., Jotzo, F., & Stern, D. I. (2014). The economics of global climate change: A historical literature review. Review of Economics, 65, 281–320.CrossRefGoogle Scholar
  22. Durlauf, S. N., Johnson, P. A., & Temple, J. R. W. (2005). Growth econometrics. In P. Aghion & S. N. Durlauf (Eds.), Handbook of economic growth (Vol. 1A, pp. 555–677). Amsterdam: North Holland.Google Scholar
  23. Ehrlich, P. R., & Holdren, J. P. (1971). Impact of population growth. Science, 171(3977), 1212–1217.CrossRefGoogle Scholar
  24. Entorf, H. (1997). Random walks with drifts: Nonsense regression and spurious fixed-effect estimation. Journal of Econometrics, 80(2), 287–296.CrossRefGoogle Scholar
  25. Evans, P. (1996). Using cross-country variances to evaluate growth theories. Journal of Economic Dynamics and Control, 20(6–7), 1027–1049.CrossRefGoogle Scholar
  26. Evans, P., & Karras, G. (1996). Convergence revisited. Journal of Monetary Economics, 37(2), 249–265.CrossRefGoogle Scholar
  27. Ezcurra, R. (2007). Is there cross-country convergence in carbon dioxide emissions? Energy Policy, 35, 1363–1372.CrossRefGoogle Scholar
  28. Feenstra, R. C., Inklaar, R., & Timmer, M. P. (2015). The next generation of the Penn World Table. American Economic Review, 105(10), 3150–3182.CrossRefGoogle Scholar
  29. Figueroa, E., & Pasten, R. (2015). Beyond additive preferences: Economic behavior and the income pollution path. Resource and Energy Economics, 41, 91–102.CrossRefGoogle Scholar
  30. Frank, R. H., Jennings, S., & Bernanke, B. S. (2012). Principles of microeconomics. North Ryde: McGraw-Hill.Google Scholar
  31. Fredriksson, P. G., & Wollscheid, J. R. (2015). Legal origins and climate change policies in former colonies. Environmental and Resource Economics, 62, 309–327.CrossRefGoogle Scholar
  32. Friedman, M. (1992). Do old fallacies ever die? Journal of Economic Literature, 30(4), 2129–2132.Google Scholar
  33. Grossman, G. M. & Krueger, A. B. (1991). Environmental impacts of a North American Free Trade Agreement. NBER Working Papers, 3914.Google Scholar
  34. Harbaugh, W., Levinson, A., & Wilson, D. (2002). Re-examining the empirical evidence for an environmental Kuznets curve. Review of Economics and Statistics, 84(3), 541–551.CrossRefGoogle Scholar
  35. Herrerias, M. J. (2013). The environmental convergence hypothesis: Carbon dioxide emissions according to the source of energy. Energy Policy, 61, 1140–1150.CrossRefGoogle Scholar
  36. Hilton, F. G. H., & Levinson, A. M. (1998). Factoring the environmental Kuznets curve: Evidence from automotive lead emissions. Journal of Environmental Economics and Management, 35, 126–141.CrossRefGoogle Scholar
  37. Holtz-Eakin, D., & Selden, T. M. (1995). Stoking the fires? \({\rm CO}_{2}\) emissions and economic growth. Journal of Public Economics, 57(1), 85–101.CrossRefGoogle Scholar
  38. Jones, L. E., & Manuelli, R. E. (2001). Endogenous policy choice: The case of pollution and growth. Review of Economic Dynamics, 4, 369–405.CrossRefGoogle Scholar
  39. Kaika, D., & Zervas, E. (2013). The environmental Kuznets curve (EKC) theory. Part B: Critical issues. Energy Policy, 62, 1403–1411.CrossRefGoogle Scholar
  40. Kander, A., Jiborn, M., Moran, D. D., & Wiedmann, T. O. (2015). National greenhouse-gas accounting for effective climate policy on international trade. Nature Climate Change, 5, 431–435.CrossRefGoogle Scholar
  41. Kijima, M., Nishide, K., & Ohyama, A. (2010). Economic models for the environmental Kuznets curve: A survey. Journal of Economic Dynamics and Control, 34, 1187–1201.CrossRefGoogle Scholar
  42. Lefohn, A. S., Husar, J. D., & Husar, R. B. (1999). Estimating historical anthropogenic global sulfur emission patterns for the period 1850–1990. Atmospheric Environment, 33, 3435–3444.CrossRefGoogle Scholar
  43. Levinson, A. (2010). Offshoring pollution: Is the United States increasingly importing polluting goods? Review of Environmental Economics and Policy, 4(1), 63–83.CrossRefGoogle Scholar
  44. Lopez, R. E., & Yoon, S. W. (2014). Pollution-income dynamics. Economics Letters, 124(3), 504–507.CrossRefGoogle Scholar
  45. McPherson, M. A., & Nieswiadomy, M. L. (2005). Environmental Kuznets curve: Threatened species and spatial effects. Ecological Economics, 55(3), 395–407.CrossRefGoogle Scholar
  46. Norman, C. S. (2009). Rule of law and the resource curse: Abundance versus intensity. Environmental and Resource Economics, 43, 183–207.CrossRefGoogle Scholar
  47. Ordás Criado, C., Valente, S., & Stengos, T. (2011). Growth and pollution convergence: Theory and evidence. Journal of Environmental Economics and Management, 62, 199–214.CrossRefGoogle Scholar
  48. Panayotou, T. (1993). Empirical tests and policy analysis of environmental degradation at different stages of economic development. Working Paper, Technology and Employment Programme, International Labour Office, Geneva, WP238.Google Scholar
  49. Panayotou, T. (1997). Demystifying the environmental Kuznets curve: Turning a black box into a policy tool. Environment and Development Economics, 2, 465–484.CrossRefGoogle Scholar
  50. Pasten, R., & Figueroa, E. (2012). The environmental Kuznets curve: A survey of the theoretical literature. International Review of Environmental and Resource Economics, 6, 195–224.CrossRefGoogle Scholar
  51. Perman, R., & Stern, D. I. (2003). Evidence from panel unit root and cointegration tests that the environmental Kuznets curve does not exist. Australian Journal of Agricultural and Resource Economics, 47, 325–347.CrossRefGoogle Scholar
  52. Peters, G. P., & Hertwich, E. G. (2008). \({\rm CO}_{2}\) embodied in international trade with implications for global climate policy. Environmental Science and Technology, 42(5), 1401–1407.CrossRefGoogle Scholar
  53. Pettersson, F., Maddison, D., Acar, S., & Söderholm, P. (2013). Convergence of carbon dioxide emissions: A review of the literature. International Review of Environmental and Resource Economics, 7, 141–178.CrossRefGoogle Scholar
  54. Quah, D. (1993). Galton’s fallacy and the tests of the convergence hypothesis. Scandinavian Journal of Economics, 95(4), 427–443.CrossRefGoogle Scholar
  55. Raupach, M. R., Marland, G., Ciais, P., Le Quéré, C., Canadell, J. G., Klepper, G., et al. (2007). Global and regional drivers of accelerating \({\rm CO}_{2}\) emissions. Proceedings of the National Academy of Sciences, 104(24), 10288–10293.CrossRefGoogle Scholar
  56. Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Crespo-Cuaresma, J., Samir, K. C., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F., Alelui Da Silva, L., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J. C., Kainuma, M., Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A., & Tavoni, M. (2016). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change. doi: 10.1016/j.gloenvcha.2016.05.009.
  57. Rockey, J., & Temple, J. (2016). Growth econometrics for agnostics and true believers. European Economic Review, 81, 86–102.CrossRefGoogle Scholar
  58. Sala-i-Martin, X., Doppelhofer, G., & Miller, R. I. (2004). Determinants of long-term growth: A Bayesian averaging of classical estimates (BACE) approach. American Economic Review, 94(4), 813–835.CrossRefGoogle Scholar
  59. Sanchez, L. F., & Stern, D. I. (2016). Drivers of industrial and non-industrial greenhouse gas emissions. Ecological Economics, 124, 17–24.CrossRefGoogle Scholar
  60. Selden, T. M., & Song, D. (1994). Environmental quality and development: Is there a Kuznets curve for air pollution? Journal of Environmental Economics and Environmental Management, 27, 147–162.CrossRefGoogle Scholar
  61. Shafik, N. (1994). Economic development and environmental quality: An econometric analysis. Oxford Economic Papers, 46, 757–773.CrossRefGoogle Scholar
  62. Smith, S. J., van Ardenne, J., Klimont, Z., Andres, R. J., Volke, A., & Delgado, Arias S. (2011). Anthropogenic sulfur dioxide emissions: 1850–2005. Atmospheric Chemistry and Physics, 11, 1101–1116.CrossRefGoogle Scholar
  63. Solow, R. M. (1956). A contribution to the theory of economic growth. Quarterly Journal of Economics, 70, 65–94.CrossRefGoogle Scholar
  64. Stefanski, R. (2013). On the mechanics of the ‘Green Solow Model’. OxCarre Research Paper, 47.Google Scholar
  65. Stern, D. I. (1998). Progress on the environmental Kuznets curve? Environment and Development Economics, 3, 173–196.CrossRefGoogle Scholar
  66. Stern, D. I. (2002). Explaining changes in global sulfur emissions: An econometric decomposition approach. Ecological Economics, 42, 201–220.CrossRefGoogle Scholar
  67. Stern, D. I. (2004). The rise and fall of the environmental Kuznets curve. World Development, 32(8), 1419–1439.CrossRefGoogle Scholar
  68. Stern, D. I. (2007). The effect of NAFTA on energy and environmental efficiency in Mexico. Policy Studies Journal, 35(2), 291–322.CrossRefGoogle Scholar
  69. Stern, D. I. (2010). Between estimates of the emissions-income elasticity. Ecological Economics, 69, 2173–2182.CrossRefGoogle Scholar
  70. Stern, D. I., & Common, M. S. (2001). Is there an environmental Kuznets curve for sulfur? Journal of Environmental Economics and Environmental Management, 41, 162–178.CrossRefGoogle Scholar
  71. Stern, D. I., Common, M. S., & Barbier, E. B. (1996). Economic growth and environmental degradation: The environmental Kuznets curve and sustainable development. World Development, 24, 1151–1160.CrossRefGoogle Scholar
  72. Stern, D. I., & Jotzo, F. (2010). How ambitious are China and India’s emissions intensity targets? Energy Policy, 38(11), 6776–6783.CrossRefGoogle Scholar
  73. Stern, D. I., & Van Dijk, J. (2016). Economic growth and global particulate pollutant concentrations. CCEP Working Papers 1604.Google Scholar
  74. Stokey, N. L. (1998). Are there limits to growth? International Economic Review, 39(1), 1–31.CrossRefGoogle Scholar
  75. Strazicich, M. C., & List, J. A. (2003). Are \({\rm CO}_{2}\) emission levels converging among industrial countries? Environmental and Resource Economics, 24(3), 263–271.CrossRefGoogle Scholar
  76. Suri, V., & Chapman, D. (1998). Economic growth, trade and the energy: Implications for the environmental Kuznets curve. Ecological Economics, 25, 195–208.CrossRefGoogle Scholar
  77. Torras, M., & Boyce, J. K. (1998). Income, inequality, and pollution: A reassessment of the environmental Kuznets curve. Ecological Economics, 25, 147–160.CrossRefGoogle Scholar
  78. Tsurumi, T., & Managi, S. (2015). Environmental Kuznets curve: Economic growth and emission reduction. In S. Managi (Ed.), The economics of green growth: New indicators for sustainable societies (pp. 49–70). New York: Routledge.Google Scholar
  79. Verbeke, T., & de Clerq, M. (2006). The EKC: Some really disturbing Monte Carlo evidence. Environmental Modelling & Software, 21, 1447–1454.CrossRefGoogle Scholar
  80. Vollebergh, H. R. J., Melenberg, B., & Dijkgraaf, E. (2009). Identifying reduced-form relations with panel data: The case of pollution and income. Journal of Environmental Economics and Management, 58, 27–42.CrossRefGoogle Scholar
  81. Wagner, M. (2008). The carbon Kuznets curve: A cloudy picture emitted by bad econometrics. Resource and Energy Economics, 30, 388–408.CrossRefGoogle Scholar
  82. Wagner, M. (2015). The environmental Kuznets curve, cointegration and nonlinearity. Journal of Applied Econometrics, 30(6), 948–967.CrossRefGoogle Scholar
  83. Westerlund, J., & Basher, S. A. (2008). Testing for convergence in carbon dioxide emissions using a century of panel data. Environmental and Resource Economics, 40, 109–120.CrossRefGoogle Scholar
  84. World Bank. (1992). World development report 1992: Development and the environment. New York: Oxford University Press.Google Scholar
  85. World Commission on Environment and Development. (1987). Our common future. Oxford: Oxford University Press.Google Scholar
  86. York, R. (2012). Asymmetric effects of economic growth and decline on \({\rm CO}_{2}\) emissions. Nature Climate Change, 2, 762–764.CrossRefGoogle Scholar
  87. Zhang, X., Davidson, E. A., Mauzerall, D. L., Searchinger, T. D., Dumas, P., & Shen, Y. (2015). Managing nitrogen for sustainable development. Nature, 528, 51–59.Google Scholar
  88. Zhao, Y., Zhang, J., & Nielsen, C. P. (2013). The effects of recent control policies on trends in emissions of anthropogenic atmospheric pollutants and \({\rm CO}_{2}\) in China. Atmospheric Chemistry and Physics, 13, 487–508.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Crawford School of Public PolicyThe Australian National UniversityActonAustralia

Personalised recommendations