Journal of Bioeconomics

, Volume 17, Issue 3, pp 217–242 | Cite as

When doing nothing is something. How task allocation strategies compromise between flexibility, efficiency, and inactive agents

Article

Abstract

We expect that human organizations and cooperative animal groups should be optimized for collective performance. This often involves the allocation of different individuals to different tasks. Social insect colonies are a prime example of cooperative animal groups that display sophisticated mechanisms of task allocation. Here we discuss which task allocation strategies may be adapted to which environmental and social conditions. Effective and robust task allocation is a hard problem, and in many biological and engineered complex systems is solved in a decentralized manner: human organizations may benefit from insights into what makes decentralized strategies of group organization effective. In addition, we often find considerable variation among individuals in how much work they appear to contribute, despite the fact that individual selfishness in social insects is low and optimization occurs largely at the group level. We review possible explanations for uneven workloads among workers, including limitations on individual information collection or constraints of task allocation efficiency, such as when there is a mismatch between the frequency of fluctuations in demand for work and the speed at which workers can be reallocated. These processes are likely to apply to any system in which worker agents are allocated to tasks with fluctuating demand, and should therefore be instructive to understanding optimal task allocation and inactive workers in any distributed system. Some of these processes imply that a certain proportion of inactive workers can be an adaptive strategy for collective organization.

Keywords

Task allocation Inactivity Organization of work Decentralized complex systems Social insects Resource allocation 

References

  1. Allison, T., & Cicchetti, D. V. (1976). Sleep in mammals: Ecological and constitutional correlates. Science, 194, 732–734.CrossRefGoogle Scholar
  2. Anderson, C., & Ratnieks, F. L. (1999). Task partitioning in insect societies. I. Effect of colony size on queueing delay and colony ergonomic efficiency. The American Naturalist, 154, 521–535.CrossRefGoogle Scholar
  3. Angelini, V., Brugiavini, A., & Weber, G. (2009). Ageing and unused capacity in Europe: Is there an early retirement trap? Economic Policy, 24, 463–508.CrossRefGoogle Scholar
  4. Asvanund, A., Clay, K., Krishnan, R., & Smith, M. D. (2004). An empirical analysis of network externalities in peer-to-peer music-sharing networks. Information Systems Research, 15, 155–174. doi:10.1287/isre.1040.0020.CrossRefGoogle Scholar
  5. Baran, M., & Wu, F. (1989). Network reconfiguration in distribution-systems for loss reduction and load balancing. IEEE Transactions on Power Delivery, 4, 1401–1407. doi:10.1109/61.25627.CrossRefGoogle Scholar
  6. Becker, G. S., & Murphy, K. M. (1992). The division of labor, coordination costs, and knowledge. Quarterly Journal of Economics, 107, 1137–1160.CrossRefGoogle Scholar
  7. Beekman, M., Calis, J. N. M., & Boot, W. J. (2000). Insect behaviour: Parasitic honeybees get royal treatment. Nature, 404, 723–723. doi:10.1038/35008148.CrossRefGoogle Scholar
  8. Bernays, E. A. (2001). Neural limitations in phytophagous insects: implications for diet breadth and evolution of host affiliation. Annual Review of Entomology, 46, 703–727.CrossRefGoogle Scholar
  9. Bertsekas, D. P., & Tsitsiklis, J. N. (1989). Parallel and distributed computation: Numerical methods. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.Google Scholar
  10. Beshers, S. N., & Fewell, J. H. (2001). Models of division of labor in social insects. Annual Review of Entomology, 46, 413–440.CrossRefGoogle Scholar
  11. Blanchard, G. B., Orledge, G. M., Reynolds, S. E., & Franks, N. R. (2000). Division of labour and seasonality in the ant Leptothorax albipennis: Worker corpulence and its influence on behaviour. Animal Behaviour, 59, 723–738.CrossRefGoogle Scholar
  12. Blonder, B., & Dornhaus, A. (2011). Time-ordered networks reveal limitations to information flow in ant colonies. PloS One, 6, e20298.CrossRefGoogle Scholar
  13. Bolton, B., Alpert, G., Ward, P. S., & Naskrecki, P. (2006). Bolton’s catalogue of ants of the world: 1758–2005. Cambridge, MA: Harvard University Press.Google Scholar
  14. Bourke, A. F. G., & Franks, N. R. (1995). Social evolution in ants. Princeton, NJ: Princeton University Press.Google Scholar
  15. Breed, M. D., Guzmán-Novoa, E., & Hunt, G. J. (2004). Defensive behavior of honey bees: Organization, genetics, and comparisons with other bees. Annual Review of Entomology, 49(271–298), 3.Google Scholar
  16. Breed, M. D., Williams, D. B., & Queral, A. (2002). Demand for task performance and workforce replacement: Undertakers in honeybee, Apis mellifera, colonies. Journal of Insect Behavior, 15, 319–329.CrossRefGoogle Scholar
  17. Brugiavini, A., Croda, E., & Mariuzzo, F. (2005). Labour force participation of the elderly: Unused capacity? In A. Börsch-Supan, A. Brugiavini, H. Jürges, J. Mackenbach, J. Siegrist & G. Weber (Eds.), Health, ageing and retirement in Europe–first results from the survey of health, ageing and retirement in Europe (pp. 236–240). Mannheim: MEA.Google Scholar
  18. Brutschy, A., Pini, G., Pinciroli, C., Birattari, M., & Dorigo, M. (2014). Self-organized task allocation to sequentially interdependent tasks in swarm robotics. Autonomous Agents and Multi-Agent Systems, 28(1), 101–125.CrossRefGoogle Scholar
  19. Calahi, P., Traniello, J. F., & Werner, M. H. (1983). Age polyethism: its occurrence in the ant Pheidole hortensis, and some general considerations. Psyche (Stuttg), 90, 395–412.CrossRefGoogle Scholar
  20. Camargo, R. S., Forti, L. C., Lopes, J. F. S., Andrade, A. P. P., & Ottati, A. L. T. (2007). Age polyethism in the leaf-cutting ant Acromyrmex subterraneus brunneus Forel, 1911 (Hym., Formicidae). Journal of Applied Entomology, 131(2), 139–145.CrossRefGoogle Scholar
  21. Camazine, S., Deneubourg, J. L., Franks, N. R., Sneyd, J., Theraulaz, G., & Bonabeau, E. (2003). Self-organization in biological systems. Princeton, NJ: Princeton University Press.Google Scholar
  22. Charbonneau, D., & Dornhaus, A. (2015). Workers “specialized” on inactivity: Behavioral consistency of inactive workers and their role in task allocation. Behavioral Ecology and Sociobiology. doi:10.1007/s00265-015-1958-1.
  23. Charbonneau, D., & Dornhaus, A. (In prep.). Who are the “lazy” ants? Concurrently testing multiple hypotheses for the function of inactivity in social insects.Google Scholar
  24. Charbonneau, D., Hillis, N., & Dornhaus, A. (2015). ‘Lazy’ in nature: Ant colony time budgets show high ‘inactivity’ in the field as well as in the lab. Insectes Sociaux, 62(1), 31–35. doi:10.1007/s00040-014-0370-6.
  25. Chittka, L., Thomson, J. D., & Waser, N. M. (1999). Flower constancy, insect psychology, and plant evolution. Naturwissenschaften, 86, 361–377.CrossRefGoogle Scholar
  26. Cicirello, V. A., & Smith, S. F. (2004). Wasp-like agents for distributed factory coordination. Autonomous Agents and Multi-Agent Systems, 8, 237–266.CrossRefGoogle Scholar
  27. Cirelli, C., & Tononi, G. (2008). Is sleep essential? PLoS Biology, 6, e216. doi:10.1371/journal.pbio.0060216.CrossRefGoogle Scholar
  28. Cole, B. J. (1986). The social behavior of Leptothorax allardycei (Hymenoptera, Formicidae): time budgets and the evolution of worker reproduction. Behavioral Ecology and Sociobiology, 18, 165–173.CrossRefGoogle Scholar
  29. Cole, B. J. (1981). Dominance hierarchies in leptothorax ants. New York Science, 212, 83.CrossRefGoogle Scholar
  30. Conaldi, G., Lomi, A., & Tonellato, M. (2012). Dynamic models of affiliation and the network structure of problem solving in an open source software project. Organizational Research Methods, 15, 385–412.CrossRefGoogle Scholar
  31. Constantino, R. (1998). Catalog of the living termites of the New World (Insecta: Isoptera). Arquivos de Zoologia, 35, 135–230.CrossRefGoogle Scholar
  32. Cook, C. N., & Breed, M. D. (2013). Social context influences the initiation and threshold of thermoregulatory behaviour in honeybees. Animal Behaviour, 86, 323–329.CrossRefGoogle Scholar
  33. Corbara, B., Lachaud, J.-P., & Fresneau, D. (1989). Individual variability, social structure and division of labour in the ponerine ant Ectatomma ruidum Roger (Hymenoptera, Formicidae). Ethology, 82, 89–100.CrossRefGoogle Scholar
  34. Cornejo, A., Dornhaus, A., Lynch, N., & Nagpal, R. (2014). Task allocation in ant colonies. In F. Kuhn (Ed.), Distributed computing (pp. 46–60). Berlin: Springer.Google Scholar
  35. Di Caro, G., & Dorigo, M. (1998). AntNet: Distributed stigmergetic control for communications networks. Journal of Artificial Intelligence Research, 9, 317–365. http://arxiv.org/abs/1105.5449.
  36. Di Caro, G., Ducatelle, F., & Gambardella, L. M. (2004, January). AntHocNet: An ant-based hybrid routing algorithm for mobile ad hoc networks. In X. Yao, E. K. Burke, J. A. Lozano, J. Smith, J. J. Merelo-Guervós, J. A. Bullinaria, et al. (Eds.), Parallel Problem Solving from Nature—PPSN VIII (pp. 461–470). Berlin: Springer.Google Scholar
  37. Dornhaus, A. (2008). Specialization does not predict individual efficiency in an ant. PLoS Biology, 6, e285.CrossRefGoogle Scholar
  38. Dornhaus, A., & Chittka, L. (2004). Information flow and regulation of foraging activity in bumble bees (Bombus spp.). Apidologie, 35, 183–192. doi:10.1051/apido:2004002.CrossRefGoogle Scholar
  39. Dornhaus, A., & Powell, S. (2009). Foraging and defence strategies. Oxford: Oxford University Press.CrossRefGoogle Scholar
  40. Dornhaus, A., Powell, S., & Bengston, S. (2012). Group size and its effects on collective organization. Annual Review of Entomology, 57, 123–141. doi:10.1146/annurev-ento-120710-100604.CrossRefGoogle Scholar
  41. Duarte, A., Weissing, F. J., Pen, I., & Keller, L. (2011). An evolutionary perspective on self-organized division of labor in social insects. Annual Review of Ecology, Evolution, and Systematics, 42, 91–110.CrossRefGoogle Scholar
  42. Dukas, R., & Kamil, A. C. (2001). Limited attention: The constraint underlying search image. Behavioral Ecology, 12, 192–199.CrossRefGoogle Scholar
  43. Duong, N., & Dornhaus, A. (2012). Ventilation response thresholds do not change with age or self-reinforcement in workers of the bumble bee Bombus impatiens. Insectes Sociaux, 59, 25–32. doi:10.1007/s00040-011-0183-9.CrossRefGoogle Scholar
  44. Elgar, M. A., Pagel, M. D., & Harvey, P. H. (1988). Sleep in mammals. Animal Behaviour, 36, 1407–1419.CrossRefGoogle Scholar
  45. Feinerman, O., & Korman, A. (2013). Theoretical distributed computing meets biology: A review. In C. Hota & P. K. Srimani (Eds.), Distributed computing and internet technology (pp. 1–18). Berlin: Springer.Google Scholar
  46. Feldman, M., Papadimitriou, C., Chuang, J., & Stoica, I. (2006). Free-riding and whitewashing in peer-to-peer systems. IEEE Journal on Selected Areas in Communications, 24, 1010–1019. doi:10.1109/JSAC.2006.872882.CrossRefGoogle Scholar
  47. Fewell, J. H., & Bertram, S. M. (1999). Division of labor in a dynamic environment: Response by honeybees (Apis mellifera) to graded changes in colony pollen stores. Behavioral Ecology and Sociobiology, 46, 171–179.CrossRefGoogle Scholar
  48. Fewell, J. H., & Winston, M. L. (1992). Colony state and regulation of pollen foraging in the honey bee, Apis mellifera L. Behavioral Ecology and Sociobiology, 30, 387–393.CrossRefGoogle Scholar
  49. Fjerdingstad, E. J., & Crozier, R. H. (2006). The evolution of worker caste diversity in social insects. The American Naturalist, 167, 390–400.CrossRefGoogle Scholar
  50. Foukia, N., Hassas, S., Fenet, S., & Albuquerque, P. (2003). Combining immune systems and social insect metaphors: a paradigm for distributed intrusion detection and response system. In E. Horlait, T. Magedanz & R. H. Glitho (Eds.), Mobile Agents for Telecommunication Applications for Telecommunication Applications (pp. 251–264). Berlin: Springer.Google Scholar
  51. Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., et al. (2009). Above the clouds: A Berkeley view of cloud computing. Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Report UCB/EECS, 28, 13.Google Scholar
  52. Franks, N. R., & Sendova-Franks, A. B. (1992). Brood sorting by ants: Distributing the workload over the work-surface. Behavioral Ecology and Sociobiology, 30, 109–123.CrossRefGoogle Scholar
  53. Franks, N., & Tofts, C. (1994). Foraging for work–How tasks allocate workers. Animal Behaviour, 48, 470–472. doi:10.1006/anbe.1994.1261.CrossRefGoogle Scholar
  54. Fraser, V. S., Kaufmann, B., Oldroyd, B. P., & Crozier, R. H. (2000). Genetic influence on caste in the ant Camponotus consobrinus. Behavioral Ecology and Sociobiology, 47, 188–194.CrossRefGoogle Scholar
  55. Frayret, J.-M., D’Amours, S., & Montreuil, B. (2004). Coordination and control in distributed and agent-based manufacturing systems. Production Planning & Control, 15, 42–54.CrossRefGoogle Scholar
  56. Fresneau, D. (1984). Développement ovarien et statut social chez une fourmi primitiveNeoponera obscuricornis Emery (Hym. Formicidae, Ponerinae). Insectes Sociaux, 31, 387–402.CrossRefGoogle Scholar
  57. Fulkerson, B., & Staffend, G. (1997). Decentralized control in the customer focused enterprise. Annals of Operations Research, 75, 325–333.CrossRefGoogle Scholar
  58. Gadagkar, R., & Joshi, N. V. (1984). Social organisation in the Indian wasp Ropalidia cyathiformis (Fab.)(Hymenoptera: Vespidae). Z Für Tierpsychol, 64, 15–32.CrossRefGoogle Scholar
  59. Gadau, J., Fewell, J., & Wilson, E. O. (2009). Organization of insect societies: From genome to sociocomplexity. Cambridge, MA: Harvard University Press.Google Scholar
  60. Georgiou, C., & Shvartsman, A. A. (2011). Cooperative task-oriented computing: Algorithms and complexity. Synthesis Lectures on Distributed Computing Theory, 2, 1–167.CrossRefGoogle Scholar
  61. Gerkey, B. P., & Matarić, M. J. (2004). A formal analysis and taxonomy of task allocation in multi-robot systems. The International Journal of Robotics Research, 23, 939–954.CrossRefGoogle Scholar
  62. Gordon, D. M. (1983). Daily rhythms in social activities of the harvester ant, Pogonomyrmex badius. Psyche: A Journal of Entomology, 90, 413–423. doi:10.1155/1983/60725.CrossRefGoogle Scholar
  63. Gordon, D. M. (1996). The organization of work in social insect colonies. Nature, 380, 121–124.CrossRefGoogle Scholar
  64. Gordon, D. M. (1999). Interaction patterns and task allocation in ant colonies. Basel: Birkhäuser Verlag.CrossRefGoogle Scholar
  65. Gordon, D. M., & Mehdiabadi, N. J. (1999). Encounter rate and task allocation in harvester ants. Behavioral Ecology and Sociobiology, 45, 370–377.CrossRefGoogle Scholar
  66. Grimaldi, D. A., & Engel, M. S. (2005). Evolution of the insects. New York: Cambridge University Press.Google Scholar
  67. Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., et al. (2005). Pattern-oriented modeling of agent-based complex systems: Lessons from ecology. Science, 310(5750), 987–991.CrossRefGoogle Scholar
  68. Gronenberg, W., & Couvillon, M. J. (2010). Brain composition and olfactory learning in honey bees. Neurobiology of Learning and Memory, 93, 435–443. doi:10.1016/j.nlm.2010.01.001.CrossRefGoogle Scholar
  69. Hamermesh, D. S. (1990). Shirking or productive schmoozing: Wages and the allocation of time at work. Cambridge, MA: National Bureau of Economic Research.Google Scholar
  70. Helbing, D., & Balietti, S. (2011). From social simulation to integrative system design. The European Physical Journal Special Topics, 195, 69–100. doi:10.1140/epjst/e2011-01402-7.CrossRefGoogle Scholar
  71. Herbers, J. M. (1983). Social organization in Leptothorax ants: Within-And between-species patterns. Psyche: A Journal of Entomology, 90, 361–386.CrossRefGoogle Scholar
  72. Hillis, N., Charbonneau, D., & Dornhaus, A. (In prep.). Are “lazy” ants selfish? Testing whether inactive ant workers invest more in their own reproduction.Google Scholar
  73. Holden, C. (1989). Entomologists wane as insects wax. Science, 246, 754–756. doi:10.1126/science.2814497.CrossRefGoogle Scholar
  74. Hölldobler, B., & Wilson, E. O. (1990). The ants. Cambridge, MA: Belknap Press of Harvard University Press.CrossRefGoogle Scholar
  75. Huang, Z.-Y., & Robinson, G. E. (1996). Regulation of honey bee division of labor by colony age demography. Behavioral Ecology and Sociobiology, 39, 147–158. doi:10.1007/s002650050276.CrossRefGoogle Scholar
  76. Huang, Z.-Y., Robinson, G. E., & Borst, D. W. (1994). Physiological correlates of division of labor among similarly aged honey bees. Journal of Comparative Physiology A, 174, 731–739.CrossRefGoogle Scholar
  77. Ishii, Y., & Hasgeawa, E. (2013). The mechanism underlying the regulation of work-related behaviors in the monomorphic ant, Myrmica kotokui. Journal of Ethology, 31, 61–69.CrossRefGoogle Scholar
  78. Itoh, H. (1992). Journal of Law, Economics, & Organization. Cooperation in hierarchical organizations: An incentive perspective, 8, 321–345.Google Scholar
  79. Jandt, J. M., & Dornhaus, A. (2014). Bumblebee response thresholds and body size: Does worker diversity increase colony performance? Animal Behaviour, 87, 97–106.CrossRefGoogle Scholar
  80. Jandt, J. M., & Dornhaus, A. (2011). Competition and cooperation: Bumblebee spatial organization and division of labor may affect worker reproduction late in life. Behavioral Ecology and Sociobiology, 65, 2341–2349.CrossRefGoogle Scholar
  81. Jandt, J. M., & Dornhaus, A. (2009). Spatial organization and division of labour in the bumblebee Bombus impatiens. Animal Behaviour, 77, 641–651.CrossRefGoogle Scholar
  82. Jandt, J., Robins, N., Moore, R., & Dornhaus, A. (2012). Individual bumblebees vary in response to disturbance: A test of the defensive reserve hypothesis. Insectes Sociaux, 59, 313–321.CrossRefGoogle Scholar
  83. Jeanne, R. L. (1999). Group size, productivity, and information flow in social wasps. In D. C. Detrain, D. J. L. Deneubourg, & P. D. J. M. Pasteels (Eds.), Information processing in social insects (pp. 3–30). Basel: Birkhäuser.CrossRefGoogle Scholar
  84. Jeanne, R. L. (1986). The organization of work in polybia occidentalis: Costs and benefits of specialization in a social wasp. Behavioral Ecology and Sociobiology, 19, 333–341. doi:10.2307/4599967.CrossRefGoogle Scholar
  85. Johnson, B. R. (2008). Global information sampling in the honey bee. Naturwissenschaften, 95, 523–530.CrossRefGoogle Scholar
  86. Johnson, B. R. (2003). Organization of work in the honeybee: A compromise between division of labour and behavioural flexibility. Proceedings of the Royal Society of London B: Biological Sciences, 270, 147–152. doi:10.1098/rspb.2002.2207.CrossRefGoogle Scholar
  87. Johnson, B. R. (2002). Reallocation of labor in honeybee colonies during heat stress: The relative roles of task switching and the activation of reserve labor. Behavioral Ecology and Sociobiology, 51, 188–196. doi:10.1007/s00265-001-0419-1.CrossRefGoogle Scholar
  88. Johnson, S. (2012). Emergence: The connected lives of ants, brains, cities, and software. New York: Simon and Schuster.Google Scholar
  89. Johnston, A. B., & Wilson, E. O. (1985). Correlates of variation in the major/minor ratio of the ant, Pheidole dentata (Hymenoptera: Formicidae). Annals of the Entomological Society of America, 78, 8–11.CrossRefGoogle Scholar
  90. Julian, G. E., & Fewell, J. H. (2004). Genetic variation and task specialization in the desert leaf-cutter ant, Acromyrmex versicolor. Animal Behaviour, 68, 1–8.CrossRefGoogle Scholar
  91. Karsai, I., & Wenzel, J. W. (2000). Organization and regulation of nest construction behavior in Metapolybia wasps. Journal of Insect Behavior, 13, 111–140. doi:10.1023/A:1007771727503.CrossRefGoogle Scholar
  92. Kauffman, S. A. (1993). The origins of order: Self organization and selection in evolution. New York: Oxford University Press.Google Scholar
  93. Kolmes, S. A. (1986). Age polyethism in worker honey bees. Ethology, 71, 252–255.CrossRefGoogle Scholar
  94. Kwapich, C. L., & Tschinkel, W. R. (2013). Demography, demand, death, and the seasonal allocation of labor in the Florida harvester ant (Pogonomyrmex badius). Behavioral Ecology and Sociobiology, 67, 2011–2027.CrossRefGoogle Scholar
  95. Lanan, M. C., Dornhaus, A., Jones, E. I., Waser, A., & Bronstein, J. L. (2012). The trail less traveled: Individual decision-making and its effect on group behavior. PLoS One, 7(10), e47976. doi:10.1371/journal.pone.0047976.
  96. Levchuk, G. M., Levchuk, Y. N., Luo, J., Pattipati, K. R., & Kleinman, D. L. (2002). Normative design of organizations. I. Mission planning. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 32(3), 346–359. doi:10.1109/TSMCA.2002.802819.
  97. Li, F., & Tolley, D. L. (2007). Long-run incremental cost pricing based on unused capacity. IEEE Transactions on Power Systems, 22, 1683–1689.CrossRefGoogle Scholar
  98. Lindauer, M. (1952). Ein beitrag zur frage der arbeitsteilung im bienenstaat. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 34, 299–345.Google Scholar
  99. Lindbeck, A., & Snower, D. J. (1996). Reorganization of firms and labor-market inequality. The American Economic Review, 86, 315–321. doi:10.2307/2118144.Google Scholar
  100. Maistrello, L., & Sbrenna, G. (1999). Behavioural differences between male and female replacement reproductives in Kalotermes flavicollis (Isoptera, Kalotermitidae). Insectes Sociaux, 46, 186–191.CrossRefGoogle Scholar
  101. Medawar, P. B. (1962). D’Arcy Thompson and growth and form. Perspectives in Biology and Medicine, 5, 220–232.CrossRefGoogle Scholar
  102. Meiran, N., Chorev, Z., & Sapir, A. (2000). Component processes in task switching. Cognitive Psychology, 41, 211–253. doi:10.1006/cogp.2000.0736.CrossRefGoogle Scholar
  103. Mersch, D. P., Crespi, A., & Keller, L. (2013). Tracking individuals shows spatial fidelity is a key regulator of ant social organization. Science, 340, 1090–1093. doi:10.1126/science.1234316.CrossRefGoogle Scholar
  104. Michener, C. D. (1964). Reproductive efficiency in relation to colony size in hymenopterous societies. Insectes Sociaux, 11, 317–341.CrossRefGoogle Scholar
  105. Michener, C. D. (2000). The bees of the world. Baltimore, MD: JHU Press.Google Scholar
  106. Möglich, M. H. J., & Hölldobler, B. (1974). Social carrying behavior and division of labor during nest moving in ants. Psyche: A Journal of Entomology, 81, 219–236. doi:10.1155/1974/25763.CrossRefGoogle Scholar
  107. Moore, D. (2001). Honey bee circadian clocks: Behavioral control from individual workers to whole-colony rhythms. Journal of Insect Physiology, 47, 843–857.CrossRefGoogle Scholar
  108. Moore, D., Angel, J. E., Cheeseman, I. M., Fahrbach, S. E., & Robinson, G. E. (1998). Timekeeping in the honey bee colony: Integration of circadian rhythms and division of labor. Behavioral Ecology and Sociobiology, 43(3), 147–160.CrossRefGoogle Scholar
  109. Mullen, R. J., Monekosso, D., Barman, S., & Remagnino, P. (2009). A review of ant algorithms. Expert Systems with Applications, 36, 9608–9617.CrossRefGoogle Scholar
  110. Murakami, T., Higashi, S., & Windsor, D. (2000). Mating frequency, colony size, polyethism and sex ratio in fungus-growing ants (Attini). Behavioral Ecology and Sociobiology, 48, 276–284.CrossRefGoogle Scholar
  111. Muscedere, M. L., Willey, T. A., & Traniello, J. F. A. (2009). Age and task efficiency in the ant Pheidole dentata: Young minor workers are not specialist nurses. Animal Behaviour, 77, 911–918. doi:10.1016/j.anbehav.2008.12.018.CrossRefGoogle Scholar
  112. Naug, D. (2009). Structure and resilience of the social network in an insect colony as a function of colony size. Behavioral Ecology and Sociobiology, 63, 1023–1028. doi:10.1007/s00265-009-0721-x.CrossRefGoogle Scholar
  113. Navlakha, S., & Bar-Joseph, Z. (2014). Distributed information processing in biological and computational systems. Communications of the ACM, 58, 94–102.CrossRefGoogle Scholar
  114. O’Donnell, S., & Bulova, S. J. (2007). Worker connectivity: A review of the design of worker communication systems and their effects on task performance in insect societies. Insectes Sociaux, 54, 203–210.CrossRefGoogle Scholar
  115. O’Donnell, S., & Foster, R. L. (2001). Thresholds of response in nest thermoregulation by worker bumble bees, Bombus bifarius nearcticus (Hymenoptera: Apidae). Ethology, 107, 387–399.CrossRefGoogle Scholar
  116. O’Donnell, S., & Jeanne, R. L. (1995). Implications of senescence patterns for the evolution of age polyethism in eusocial insects. Behavioral Ecology, 6, 269–273.CrossRefGoogle Scholar
  117. Oldroyd, B. P., & Thompson, G. J. (2006). Behavioural genetics of the honey bee Apis mellifera. In S. J. Simpson (Ed.), Advances in insect physiology (pp. 1–49). London: Academic Press.Google Scholar
  118. Olfati-Saber, R., Fax, J. A., & Murray, R. M. (2007). Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 95, 215–233. doi:10.1109/JPROC.2006.887293.CrossRefGoogle Scholar
  119. Oster, G. F., & Wilson, E. O. (1978). Caste and ecology in the social insects. Princeton, NJ: Princeton University Press.Google Scholar
  120. Page, R. E., Jr, & Peng, C. Y.-S. (2001). Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Experimental Gerontology, 36, 695–711. doi:10.1016/S0531-5565(00)00236-9.
  121. Pankiw, T., & Page, R. E., Jr. (1999). he effect of genotype, age, sex, and caste on response thresholds to sucrose and foraging behavior of honey bees (Apis mellifera L.). Journal of Comparative Physiology A, 185, 207–213. doi:10.1007/s003590050379.
  122. Pankiw, T., & Page, R. E., Jr. (2001). Brood pheromone modulates honeybee (Apis mellifera L.) sucrose response thresholds. Behavioral Ecology and Sociobiology, 49, 206–213. doi:10.1007/s002650000282.
  123. Pankiw, T., Page, R. E., Jr, & Fondrk, M. K. (1998). Brood pheromone stimulates pollen foraging in honey bees (Apis mellifera). Behavioral Ecology and Sociobiology, 44, 193–198. doi:10.1007/s002650050531.
  124. Parunak, H. V. D. (1997). “Go to the ant”: Engineering principles from natural multi-agent systems. Annals of Operations Research, 75, 69–101.CrossRefGoogle Scholar
  125. Passera, L., Roncin, E., Kaufmann, B., & Keller, L. (1996). Increased soldier production in ant colonies exposed to intraspecific competition. Nature, 379, 630–631. doi:10.1038/379630a0.CrossRefGoogle Scholar
  126. Peeters, C., & Ito, F. (2001). Colony dispersal and the evolution of queen morphology in social Hymenoptera. Annual Review of Entomology, 46, 601–630. doi:10.1146/annurev.ento.46.1.601.CrossRefGoogle Scholar
  127. Pinter-Wollman, N., Hubler, J., Holley, J.-A., Franks, N., & Dornhaus, A. (2012). How is activity distributed among and within tasks in Temnothorax ants? Behavioral Ecology and Sociobiology, 66(10), 1407–1420.CrossRefGoogle Scholar
  128. Poff, C., Nguyen, H., Kang, T., & Shin, M. C. (2012). Efficient tracking of ants in long video with GPU and interaction. Breckenridge, CO: Inderscience Publishers.CrossRefGoogle Scholar
  129. Porter, S. D., & Tschinkel, W. R. (1985). Fire ant polymorphism: The ergonomics of brood production. Behavioral Ecology and Sociobiology, 16, 323–336.CrossRefGoogle Scholar
  130. Powell, S. (2008). Ecological specialization and the evolution of a specialized caste in Cephalotes ants. Functional Ecology, 22, 902–911.CrossRefGoogle Scholar
  131. Powell, S., & Franks, N. R. (2006). Ecology and the evolution of worker morphological diversity: A comparative analysis with Eciton army ants. Functional Ecology, 20, 1105–1114.CrossRefGoogle Scholar
  132. Powell, S., & Tschinkel, W. R. (1999). Ritualized conflict in Odontomachus brunneus and the generation of interaction-based task allocation: a new organizational mechanism in ants. Animal Behaviour, 58, 965–972.CrossRefGoogle Scholar
  133. Pratt, S. C., Mallon, E. B., Sumpter, D. J., & Franks, N. R. (2002). Quorum sensing, recruitment, and collective decision-making during colony emigration by the ant Leptothorax albipennis. Behavioral Ecology and Sociobiology, 52, 117–127.CrossRefGoogle Scholar
  134. Pugh, D. S., Hickson, D. J., & Hinings, C. R. (1969). An empirical taxonomy of structures of work organizations. Administrative Science Quarterly, 14, 115–126. doi:10.2307/2391367.CrossRefGoogle Scholar
  135. Ravary, F., Lecoutey, E., Kaminski, G., Châline, N., & Jaisson, P. (2007). Individual experience alone can generate lasting division of labor in ants. Current Biology, 17(15), 1308–1312.CrossRefGoogle Scholar
  136. Retana, J., & Cerdá, X. (1990). Social organization of cataglyphis cursor ant colonies (Hymenoptera, Formicidae): Inter-, and intraspecific comparisons. Ethology, 84, 105–122.CrossRefGoogle Scholar
  137. Rivas-Ubach, A., Sardans, J., Pérez-Trujillo, M., Estiarte, M., & Peñuelas, J. (2012). Strong relationship between elemental stoichiometry and metabolome in plants. Proceedings of the National Academy of Sciences, 109(11), 4181–4186.CrossRefGoogle Scholar
  138. Rivera, M. D., Donaldson-Matasci, M., & Dornhaus, A. (2015). Quitting time: When do honey bee foragers decide to stop foraging on natural resources? Frontiers in Ecology and Evolution, 3, 50.CrossRefGoogle Scholar
  139. Robinson, E. J., Feinerman, O., & Franks, N. R. (2009). Flexible task allocation and the organization of work in ants. Proceedings of the Royal Society B: Biological Sciences, 276, 4373–4380.CrossRefGoogle Scholar
  140. Robinson, G. E. (1992). Regulation of division of labor in insect societies. Annual Review of Entomology, 37, 637–665.CrossRefGoogle Scholar
  141. Robinson, G. E., Grozinger, C. M., & Whitfield, C. W. (2005). Sociogenomics: Social life in molecular terms. Nature Reviews Genetics, 6, 257–270.CrossRefGoogle Scholar
  142. Robinson, G. E., & Huang, Z.-Y. (1998). Colony integration in honey bees: Genetic, endocrine and social control of division of labor. Apidologie, 29, 159–170.CrossRefGoogle Scholar
  143. Robson, S. K., & Traniello, J. F. A. (1999). Key individuals and the organisation of labor in ants. In D. C. Detrain, D. J. L. Deneubourg, & P. D. J. M. Pasteels (Eds.), Information processing in social insects (pp. 239–259). Basel: Birkhäuser.CrossRefGoogle Scholar
  144. Rubenstein, M., Cornejo, A., & Nagpal, R. (2014). Programmable self-assembly in a thousand-robot swarm. Science, 345, 795–799.CrossRefGoogle Scholar
  145. Rueppell, O., Bachelier, C., Fondrk, M. K., & Page, R. E, Jr. (2007). Regulation of life history determines lifespan of worker honey bees (Apis mellifera L.). Experimental Gerontology, 42, 1020–1032.CrossRefGoogle Scholar
  146. Samways, M. J. (1993). Insects in biodiversity conservation: Some perspectives and directives. Biodiversity and Conservation, 2, 258–282.CrossRefGoogle Scholar
  147. Schmid-Hempel, P. (1990). Reproductive competition and the evolution of work load in social insects. The American Naturalist, 135, 501–526.CrossRefGoogle Scholar
  148. Schmid-Hempel, P. (1992). Worker castes and adaptive demography. Journal of Evolutionary Biology, 5, 1–12.CrossRefGoogle Scholar
  149. Schwander, T., Rosset, H., & Chapuisat, M. (2005). Division of labour and worker size polymorphism in ant colonies: The impact of social and genetic factors. Behavioral Ecology and Sociobiology, 59, 215–221.CrossRefGoogle Scholar
  150. Seeley, T. (1992). The tremble dance of the honey-bee–Message and meanings. Behavioral Ecology and Sociobiology, 31, 375–383.CrossRefGoogle Scholar
  151. Seeley, T. D. (2009). The wisdom of the hive: The social physiology of honey bee colonies. New York: Harvard University Press.Google Scholar
  152. Seeley, T. D. (1982). Adaptive significance of the age polyethism schedule in honeybee colonies. Behavioral Ecology and Sociobiology, 11, 287–293. doi:10.1007/BF00299306.CrossRefGoogle Scholar
  153. Sendova-Franks, A. B., & Franks, N. R. (1999). Self-assembly, self-organization and division of labour. Philosophical Transactions of the Royal Society B: Biological Sciences, 354, 1395–1405.CrossRefGoogle Scholar
  154. Sendova-Franks, A. B., Hayward, R. K., Wulf, B., Klimek, T., James, R., Planqué, R., et al. (2010). Emergency networking: Famine relief in ant colonies. Animal Behaviour, 79(2), 473–485.CrossRefGoogle Scholar
  155. Sendova-Franks, F. (1995). Spatial relationships within nests of the ant Leptothorax unifasciatus (Latr.) and their implications for the division of labour. Animal Behaviour, 50, 121.CrossRefGoogle Scholar
  156. Siegel, J. M. (2008). Do all animals sleep? Trends in Neurosciences, 31, 208–213. doi:10.1016/j.tins.2008.02.001.CrossRefGoogle Scholar
  157. Siegel, J. M. (2001). The REM sleep-memory consolidation hypothesis. Science, 294, 1058–1063.CrossRefGoogle Scholar
  158. Smith, A. (1776). An Inquiry into the Nature and Causes of the Wealth of Nations. A. and C. Black.Google Scholar
  159. Spaethe, J., & Chittka, L. (2003). Interindividual variation of eye optics and single object resolution in bumblebees. The Journal of Experimental Biology, 206, 3447–3453.CrossRefGoogle Scholar
  160. Spaethe, J., & Weidenmüller, A. (2002). Size variation and foraging rate in bumblebees (Bombus terrestris). Insectes Sociaux, 49, 142–146.CrossRefGoogle Scholar
  161. Sullivan, J. P., Jassim, O., Fahrbach, S. E., & Robinson, G. E. (2000). Juvenile hormone paces behavioral development in the adult worker honey bee. Hormones and Behavior, 37, 1–14.CrossRefGoogle Scholar
  162. Theraulaz, G., Bonabeau, E., & Denuebourg, J.-N. (1998). Response threshold reinforcements and division of labour in insect societies. Proceedings of the Royal Society of London Series B: Biological sciences, 265, 327–332. doi:10.1098/rspb.1998.0299.CrossRefGoogle Scholar
  163. Tschinkel, W. R. (1999). Sociometry and sociogenesis of colonies of the harvester ant, Pogonomyrmex badius: Distribution of workers, brood and seeds within the nest in relation to colony size and season. Ecological Entomology, 24, 222–237.CrossRefGoogle Scholar
  164. Uehara, E. (1990). Dual exchange theory, social networks, and informal social support. American Journal of Sociology, 96, 521–557.CrossRefGoogle Scholar
  165. Valkenburg, P. M., Peter, J., & Schouten, A. P. (2006). Friend networking sites and their relationship to adolescents’ well-being and social self-esteem. Cyberpsychology & Behavior, 9, 584–590. doi:10.1089/cpb.2006.9.584.CrossRefGoogle Scholar
  166. Varia, J. (2010). Architecting for the cloud: Best practices. http://jineshvaria.s3.amazonaws.com/public/cloudbestpractices-jvaria.pdf.
  167. Waddington, S. J., & Hughes, W. O. H. (2010). Waste management in the leaf-cutting ant Acromyrmex echinatior: The role of worker size, age and plasticity. Behavioral Ecology and Sociobiology, 64, 1219–1228. doi:10.1007/s00265-010-0936-x.CrossRefGoogle Scholar
  168. Waibel, M., Floreano, D., Magnenat, S., & Keller, L. (2006). Division of labour and colony efficiency in social insects: Effects of interactions between genetic architecture, colony kin structure and rate of perturbations. Proceedings of the Royal Society B: Biological Sciences, 273, 1815–1823.CrossRefGoogle Scholar
  169. Waser, N. M., Chittka, L., Price, M. V., Williams, N. M., & Ollerton, J. (1996). Generalization in pollination systems, and why it matters. Ecology, 77(4), 1043–1060. doi:10.2307/2265575.
  170. Waters, J. S., & Fewell, J. H. (2012). Information processing in social insect networks. PLoS One, 7, e40337. doi:10.1371/journal.pone.0040337.CrossRefGoogle Scholar
  171. Weckwerth, W. (2003). Metabolomics in systems biology. Annual Review of Plant Biology, 54, 669–689.CrossRefGoogle Scholar
  172. Weidenmuller, A. (2004). The control of nest climate in bumblebee (Bombus terrestris) colonies: Interindividual variability and self reinforcement in fanning response. Behavioral Ecology, 15, 120–128. doi:10.1093/beheco/arg101.CrossRefGoogle Scholar
  173. Weidenmüller, A., Kleineidam, C., & Tautz, J. (2002). Collective control of nest climate parameters in bumblebee colonies. Animal Behaviour, 63, 1065–1071.CrossRefGoogle Scholar
  174. Weidenmüller, A., Mayr, C., Kleineidam, C. J., & Roces, F. (2009). Preimaginal and adult experience modulates the thermal response behavior of ants. Current Biology, 19, 1897–1902.CrossRefGoogle Scholar
  175. Wenk, M. R. (2005). The emerging field of lipidomics. Nature Reviews Drug Discovery, 4, 594–610.CrossRefGoogle Scholar
  176. Wenseleers, T., & Ratnieks, F. L. (2006). Comparative analysis of worker reproduction and policing in eusocial Hymenoptera supports relatedness theory. The American Naturalist, 168, E163–E179.CrossRefGoogle Scholar
  177. Wey, T., Blumstein, D. T., Shen, W., & Jordán, F. (2008). Social network analysis of animal behaviour: A promising tool for the study of sociality. Animal Behaviour, 75, 333–344. doi:10.1016/j.anbehav.2007.06.020.CrossRefGoogle Scholar
  178. Wilson, E. O. (1980a). Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta). Behavioral Ecology and Sociobiology, 7, 143–156. doi:10.1007/BF00299520.CrossRefGoogle Scholar
  179. Wilson, E. O. (1980b). Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta). Behavioral Ecology and Sociobiology, 7, 157–165. doi:10.1007/BF00299521.CrossRefGoogle Scholar
  180. Wilson, E. O. (1985). The sociogenesis of insect colonies. Science, 228, 1489–1495.CrossRefGoogle Scholar
  181. Wilson, E. O. (1987). Causes of ecological success: The case of the ants. Journal of Animal Ecology, 56, 1–9.CrossRefGoogle Scholar
  182. Winston, M. L. (1991). The biology of the honey bee. New York: Harvard University Press.Google Scholar
  183. Woyciechowski, M., & Kozlowski, J. (1998). Division of labor by division of risk according to worker life expectancy in the honey bee (Apis mellifera L.). Apidologie, 29, 191–205.CrossRefGoogle Scholar
  184. Zambonelli, F., Omicini, A., Anzengruber, B., Castelli, G., De Angelis, F. L., Serugendo, G. D. M., et al. (2015). Developing pervasive multi-agent systems with nature-inspired coordination. Pervasive and Mobile Computing, 17, 236–252.CrossRefGoogle Scholar
  185. Zepelin, H. (1994). Mammalian sleep. In S. H. Sheldon, M. H. Kryger, R. Ferber & D. Gozal (Eds.), Principles and Practice of sleep medicine. Darien, IL: The American Academy of Sleep Medicine (AASM)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.University of ArizonaTucsonUSA

Personalised recommendations