Advertisement

Formalization of Geometric Algebra in HOL Light

  • Li-Ming Li
  • Zhi-Ping Shi
  • Yong Guan
  • Qian-Ying Zhang
  • Yong-Dong Li
Article
  • 25 Downloads

Abstract

Although the theories of geometric algebra (GA) are widely applied in engineering design and analysis, the studies on their formalization have been scarcely conducted. This paper proposes a relatively complete formalization of GA in HOL Light. Both algebraic and geometric parts of the GA theories are formalized successively. For the algebraic part, a uniform abstract product is proposed to facilitate the formalization of the three basic products based on the formal definition of multivectors with three types of metrics. For the geometric part, the formal formulation is provided for the blades and versors and their relations at first. Then, several commonly used specific spaces are formally represented in the theoretical framework of GA. The novelty of the present paper lies in two aspects: (a) the multivector type, (P,Q,R)geomalg, is defined and the definition provides the most important foundation for the formalization of geometric algebra, and (b) a procedure is developed for automatically proving the properties of GA operations. The present work improves the function of HOL Light and makes the GA-based formal analysis and verification more convenient.

Keywords

Formalization Geometric algebra Multivectors Metrics HOL Light 

Notes

Acknowledgements

This work was supported by the National Key R & D Plan (2017YFC0806700), National Natural Science Foundation of China (61572331, 61876111, 61472468, 61602325), Capacity Building for Sci-Tech Innovation - Fundamental Scientific Research Funds (025185305000).

References

  1. 1.
    Hestenes, D.: A Unified Language for Mathematics and Physics. Springer, Netherlands (1986)CrossRefGoogle Scholar
  2. 2.
    Kleppe, A.L., Egeland, O.: Inverse kinematics for industrial robots using conformal geometric algebra. Model. Identif. Control 37(1), 63–75 (2016)CrossRefGoogle Scholar
  3. 3.
    Stanway, M.J., Kinsey, J.C.: Rotation identification in geometric algebra: theory and application to the navigation of underwater robots in the field. J. Field Robot. 32(5), 632–654 (2015)CrossRefGoogle Scholar
  4. 4.
    Bernal-Marin, M., Bayro-Corrochano, E.: Integration of Hough transform of lines and planes in the framework of conformal geometric algebra for 2D and 3D robot vision. Pattern Recognit. Lett. 32(16), 2213–2223 (2011)CrossRefGoogle Scholar
  5. 5.
    Franchini, S., Gentile, A., Sorbello, F., Vassallo, G., Vitabile, S.: An embedded, FPGA-based computer graphics coprocessor with native geometric algebra support. Integr. VlSI J. 42(3), 346–355 (2009)CrossRefGoogle Scholar
  6. 6.
    Hestenes, D., Sobczyk, G., Marsh, J.S.: Clifford algebra to geometric calculus: a unified language formathematics and physics. Am. J. Phys. 53(5), 510–511 (1985)CrossRefGoogle Scholar
  7. 7.
    Dorst, L., Doran, C., Lasenby, J.: Applications of Geometric Algebra in Computer Science and Engineering. Birkhauser, Basel (2002)CrossRefGoogle Scholar
  8. 8.
    Macdonald, A.: A survey of geometric algebra and geometric calculus. Adv. Appl. Clifford Algebras 27(1), 1–39 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Abłamowicz, R., Fauser, B.: Clifford and Graßmann Hopf algebras via the BIGEBRA package for Maple. Comput. Phys. Commun. 170(2), 115–130 (2002)CrossRefGoogle Scholar
  10. 10.
    Aragoncamarasa, G., Aragongonzalez, G., Aragon, J.L., Rodriguezandrade, M.A.: Clifford algebra with mathematica. Physics (2008). Preprint. arXiv:0810.2412. October 2008
  11. 11.
    Mann, S., Dorst, L., Bouma, T.: The Making of GABLE: A Geometric Algebra Learning Environment in Matlab. Birkhüser, Boston (2001)Google Scholar
  12. 12.
    Gordon, M.J.C., Melham, T.F.: Introduction to HOL: a theorem proving environment for higher order logic. FEBS Lett. 89(2), 317–320 (1993)zbMATHGoogle Scholar
  13. 13.
    Harrison, J.: HOL light: a tutorial introduction. In Srivas, M., Camilleri, A., eds.: Proceedings of the First International Conference on Formal Methods in Computer-Aided Design (FMCAD’96). Volume 1166 of Lecture Notes in Computer Science., Springer, pp. 265–269 (1996)Google Scholar
  14. 14.
    Paulson, L.C.: Isabelle—A Generic Theorem Prover. LNCS, Heidelberg (1994)zbMATHGoogle Scholar
  15. 15.
    Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. Springer, Berlin (2004)CrossRefGoogle Scholar
  16. 16.
    Dutertre, B.: Elements of mathematical analysis in PVS. Lect. Notes Comput. Sci. 1125, 141–156 (1999)CrossRefGoogle Scholar
  17. 17.
    Kaufmann, M., Manolios, P., Moore, J.S., Kaufmann, M., Moore, J.S.: Acl2 Computer Aided Reasoning: An Approach (vol 1). World Scientific Publishing Company 81(957), 1–27 (2002)Google Scholar
  18. 18.
    Rudnicki, P.: An overview of the Mizar project. Univ. Technol. Bastad 31(3), 311–332 (1994)Google Scholar
  19. 19.
    Arthan, R.: Mathematical Case Studies: The Geometric Algebra (2006). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.1120. May 2012
  20. 20.
    Fuchs, L., Théry, L.: Implementing geometric algebra products with binary trees. Adv. Appl. Clifford Algebras 24(2), 589–611 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Harrison, J.: The HOL Light theory of Euclidean space. J. Autom. Reason. 50(2), 173–190 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ma, S., Shi, Z., Shao, Z., Guan, Y., Li, L., Li, Y.: Higher-order logic formalization of conformal geometric algebra and its application in verifying a robotic manipulation algorithm. Adv. Appl. Clifford Algebras 26(4), 1–26 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Harrison, J.: The HOL Light theorem prover. http://www.cl.cam.ac.uk/~jrh13/hol-light/. Accessed 6 Aug 2016
  24. 24.
    Harrison, J.: HOL Light: an overview. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) Proceedings of the 22nd International Conference on Theorem Proving in Higher Order Logics, TPHOLs 2009. Volume 5674 of Lecture Notes in Computer Science., Munich, Germany, Springer-Verlag 60–66 (2009)Google Scholar
  25. 25.
    Hales, T., Adams, M., Bauer, G., Dang, D.T., Harrison, J., Hoang, T.L., Kaliszyk, C., Magron, V., Mclaughlin, S., Nguyen, T.T.: A formal proof of the Kepler conjecture. Mathematics 16(3), 47–58 (2015)zbMATHGoogle Scholar
  26. 26.
    Harrison, J.: Geometric algebra. https://github.com/jrh13/hol-light/blob/master/Multivariate/clifford.ml. Accessed 4 May 2016
  27. 27.
    Rivera-Rovelo, J., Bayro-Corrochano, E.: Medical image segmentation using a self-organizing neural network and Clifford geometric algebra. In: International Joint Conference on Neural Networks, pp. 3538–3545 (2006)Google Scholar
  28. 28.
    Hestenes, D., Li, H., Rockwood, A.: New algebraic tools for classical geometry. Geometric Computing with Clifford Algebras, pp. 3–26 (2001)Google Scholar
  29. 29.
    Hestenes, D.: New foundations for classical mechanics. Math. Gaz. 71(458), 703–704 (2002)zbMATHGoogle Scholar
  30. 30.
    Harrison, J.: A HOL theory of Euclidean space. In: Hurd, J., Melham, T. (eds.) Theorem Proving in Higher Order Logics, 18th International Conference, TPHOLs 2005. Volume 3603 of Lecture Notes in Computer Science., Oxford, UK, Springer-Verlag, pp. 114–129 (2005)Google Scholar
  31. 31.
    Harrison, J.: Definition of finite Cartesian product types. https://github.com/jrh13/hol-light/blob/master/cart.ml. Accessed 16 May 2016
  32. 32.
    Harrison, J.: Real vectors in Euclidean space, and elementary linear algebra. https://github.com/jrh13/hol-light/blob/master/Multivariate/vectors.ml. Accessed 11 June 2016
  33. 33.
    Harrison, J.: Determinant and trace of a square matrix. https://github.com/jrh13/hol-light/blob/master/Multivariate/determinants.ml. Accessed 11 Jan 2016
  34. 34.
    Dorst, L.: The Inner Products of Geometric Algebra. Birkhäuser, Boston (2002)CrossRefGoogle Scholar
  35. 35.
    Hartley, D., Tuckey, P.: Gröbner bases in Clifford and Grassmann algebras. J. Symb. Comput. 20(2), 197–205 (1995)CrossRefGoogle Scholar
  36. 36.
    Harrison, J.: Formalizing basic complex analysis. In: Matuszewski, R., Zalewska, A. (eds.) From Insight to Proof: Festschrift in Honour of Andrzej Trybulec. Volume 10(23) of Studies in Logic, Grammar and Rhetoric, pp. 151–165. University of Białystok (2007)Google Scholar
  37. 37.
    Gabrielli, A., Maggesi, M.: In: Formalizing Basic Quaternionic Analysis. Springer, Cham pp. 225–240 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.College of Information EngineeringCapital Normal UniversityBeijingChina
  2. 2.School of Mathematical ScienceCapital Normal UniversityBeijingChina
  3. 3.Beijing Key Laboratory of Electronic System Reliability TechnologyBeijingChina
  4. 4.Beijing Key Laboratory of Light Industrial Robot and Safety VerificationBeijingChina

Personalised recommendations