Semantics of Mizar as an Isabelle Object Logic

  • Cezary Kaliszyk
  • Karol Pąk
Open Access


We formally define the foundations of the Mizar system as an object logic in the Isabelle logical framework. For this, we propose adequate mechanisms to represent the various components of Mizar. We express Mizar types in a uniform way, provide a common type intersection operation, allow reasoning about type inhabitation, and develop a type inference mechanism. We provide Mizar-like definition mechanisms which require the same proof obligations and provide same derived properties. Structures and set comprehension operators can be defined as definitional extensions. Re-formalized proofs from various parts of the Mizar Library show the practical usability of the specified foundations.



Open access funding provided by University of Innsbruck and Medical University of Innsbruck. We would like to thank the anonymous reviewers, as well as Josef Urban, Chad Brown, and Julian Parsert for their comments on the previous versions of this paper. This work has been supported by the European Research Council (ERC) Grant No. 714034 SMART, OeAD Scientific & Technological Cooperation with Poland grant, and the PolishNational Science Center granted by decision noDEC-2015/19/D/ST6/01473.


  1. 1.
    Abrial, J.: Modeling in Event-B—System and Software Engineering. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Adams, M.: Proof auditing formalised mathematics. J. Formaliz. Reason. 9(1), 3–32 (2016)MathSciNetGoogle Scholar
  3. 3.
    Agerholm, S., Gordon, M.J.C.: Experiments with ZF set theory in HOL and Isabelle. In: Schubert, E.T., Windley, P.J., Alves-Foss, J. (eds.) Higher Order Logic Theorem Proving and Its Applications, Volume 971 of LNCS, pp. 32–45. Springer, Berlin (1995)CrossRefGoogle Scholar
  4. 4.
    Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection for mathematics by corpus analysis and kernel methods. J. Autom. Reason. 52(2), 191–213 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Asperti, A., Bancerek, G., Trybulec, A. (eds.): Mathematical Knowledge Management (MKM 2004), Volume 3119 of LNCS. Springer, Berlin (2004)Google Scholar
  6. 6.
    Bancerek, G.: Tarski’s classes and ranks. Formaliz. Math. 1(3), 563–567 (1990)Google Scholar
  7. 7.
    Bancerek, G., Byliński, C., Grabowski, A., Korniłowicz, A., Matuszewski, R., Naumowicz, A., Pąk, K.: The role of the Mizar Mathematical Library for interactive proof development in Mizar. J. Autom. Reason. (2017). zbMATHGoogle Scholar
  8. 8.
    Bancerek, G., Byliński, C., Grabowski, A., Korniłowicz, A., Matuszewski, R., Naumowicz, A., Pąk, K., Urban, J.: Mizar: state-of-the-art and beyond. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) Intelligent Computer Mathematics—International Conference, CICM 2015, Volume 9150 of LNCS, pp. 261–279. Springer, Berlin (2015)Google Scholar
  9. 9.
    Bancerek, G., Rudnicki, P.: A compendium of continuous lattices in MIZAR. J. Autom. Reason. 29(3–4), 189–224 (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Bancerek, G., Rudnicki, P.: Information retrieval in MML. In: Asperti, A., Buchberger, B., Davenport, J.H. (eds.) Mathematical Knowledge Management, MKM 2003, Volume 2594 of LNCS, pp. 119–132. Springer, Berlin (2003)Google Scholar
  11. 11.
    Bancerek, G., Urban, J.: Integrated semantic browsing of the Mizar Mathematical Library for authoring Mizar articles. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) Mathematical Knowledge Management (MKM 2004), Volume 3119 of LNCS, pp. 44–57. Springer, Berlin (2004)Google Scholar
  12. 12.
    Barras, B., Tankink, C., Tassi, E.: Asynchronous processing of Coq documents: from the kernel up to the user interface. In: Urban, C., Zhang, X. (eds.) Interactive Theorem Proving, ITP 2015, Volume 9236 of LNCS, pp. 51–66. Springer, Berlin (2015)Google Scholar
  13. 13.
    Blanchette, J.C., Greenaway, D., Kaliszyk, C., Kühlwein, D., Urban, J.: A learning-based fact selector for Isabelle/HOL. J. Autom. Reason. 57(3), 219–244 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.) Interactive Theorem Proving, ITP 2010, Volume 6172 of LNCS, pp. 131–146. Springer, Berlin (2010)Google Scholar
  15. 15.
    Brown, C.E.: The Egal Manual (2014)Google Scholar
  16. 16.
    Brown, C.E., Urban, J.: Extracting higher-order goals from the Mizar Mathematical Library. In: Kohlhase, M., Johansson, M., Miller, B.R., de Moura, L., Tompa, F.W. (eds.) Intelligent Computer Mathematics (CICM 2016), Volume 9791 of LNCS, pp. 99–114. Springer, Berlin (2016)Google Scholar
  17. 17.
    Byliński, C.: Introduction to categories and functors. Formaliz. Math. 1(2), 409–420 (1990)Google Scholar
  18. 18.
    Corbineau, P.: A declarative language for the Coq proof assistant. In: Miculan, M., Scagnetto, I., Honsell, F. (eds.) Types for Proofs and Programs, International Conference, TYPES 2007, Volume 4941 of LNCS, pp. 69–84. Springer, Berlin (2007)Google Scholar
  19. 19.
    Dahn, I.: Interpretation of a Mizar-like logic in first-order logic. In: Caferra, R., Salzer, G. (eds.) First-Order Theorem Proving (FTP 1998), Volume 1761 of LNCS, pp. 137–151. Springer, Berlin (1998)Google Scholar
  20. 20.
    Dahn, I., Wernhard, C.: First order proof problems extracted from an article in the Mizar Mathematical Library. In: Bonacina, M.P., Furbach, U. (eds.) First-Order Theorem Proving (FTP 1997), RISC-Linz Report Series No. 97–50, pp. 58–62. Johannes Kepler Universität, Linz (1997)Google Scholar
  21. 21.
    Davis, M.: Obvious logical inferences. In: Hayes, P.J. (ed.) International Joint Conference on Artificial Intelligence (IJCAI 1981), pp. 530–531. William Kaufmann, Burlington (1981)Google Scholar
  22. 22.
    de Moura, L.M., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The Lean theorem prover (system description). In: Felty, A.P., Middeldorp, A. (eds.) Conference on Automated Deduction, CADE 2015, Volume 9195 of LNCS, pp. 378–388. Springer, Berlin (2015)Google Scholar
  23. 23.
    Dunchev, C., Coen, C.S., Tassi, E.: Implementing HOL in an higher order logic programming language. In: Dowek, G., Licata, D.R., Alves, S. (eds.) Logical Frameworks and Meta-Languages Theory and Practice, LFMTP 2016, pp. 4:1–4:10. ACM, Albion (2016)Google Scholar
  24. 24.
    Elgot, C.C., Robinson, A.: Random-access stored-program machines, an approach to programming languages. J. ACM 11(4), 365–399 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Felty, A.P., Gunter, E.L., Hannan, J., Miller, D., Nadathur, G., Scedrov, A.: Lambda-Prolog: an extended logic programming language. In: Lusk, E.L., Overbeek, R.A. (eds.) International Conference on Automated Deduction, CADE, Volume 310 of LNCS, pp. 754–755. Springer, Berlin (1988)CrossRefGoogle Scholar
  26. 26.
    Fitch, F.B.: Symbolic Logic. An Introduction. The Ronald Press Company, New York (1952)zbMATHGoogle Scholar
  27. 27.
    Grabowski, A., Korniłowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formaliz. Reason. 3(2), 153–245 (2010)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Grabowski, A., Korniłowicz, A., Naumowicz, A.: Four decades of Mizar. J. Autom. Reason. 55(3), 191–198 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Hähnle, R., Kerber, M., Weidenbach, C.: Common syntax of the DFGSchwerpunktprogramm deduction. Technical Report TR 10/96, Fakultät für Informatik, Universität Karlsruhe, Karlsruhe, Germany (1996)Google Scholar
  30. 30.
    Harrison, J.: A Mizar mode for HOL. In: von Wright, J., Grundy, J., Harrison, J. (eds.) Theorem Proving in Higher Order Logics: TPHOLs 1996, Volume 1125 of LNCS, pp. 203–220. Springer, Berlin (1996)CrossRefGoogle Scholar
  31. 31.
    Hilbert, D.: Foundations of Geometry. Open Court, Illinois (1971)zbMATHGoogle Scholar
  32. 32.
    Iancu, M., Kohlhase, M., Rabe, F., Urban, J.: The Mizar Mathematical Library in OMDoc: translation and applications. J. Autom. Reason. 50(2), 191–202 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Jaśkowski, S.: On the rules of suppositions. Studia Logica 1, 32 (1934)zbMATHGoogle Scholar
  34. 34.
    Kaliszyk, C., Pąk, K.: Isabelle formalization of set theoretic structures and set comprehensions. In: Blamer, J., Kutsia, T., Simos, D. (eds.) Mathematical Aspects of Computer and Information Sciences, MACIS 2017, Volume 10693 of LNCS. Springer, Berlin (2017)Google Scholar
  35. 35.
    Kaliszyk, C., Pąk, K.: Presentation and manipulation of Mizar properties in an Isabelle object logic. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.) Intelligent Computer Mathematics - CICM 2017, Volume 10383 of LNCS, pp. 193–207. Springer, Berlin (2017)Google Scholar
  36. 36.
    Kaliszyk, C., Pąk, K.: Progress in the independent certification of Mizar Mathematical Library in Isabelle. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, FedCSIS 2017, pp. 227–236 (2017)Google Scholar
  37. 37.
    Kaliszyk, C., Pąk, K., Urban, J.: Towards a Mizar environment for Isabelle: Foundations and language. In: Avigad, J., Chlipala, A. (eds.) Proceedings of 5th Conference on Certified Programs and Proofs (CPP 2016), pp. 58–65. ACM (2016)Google Scholar
  38. 38.
    Kaliszyk, C., Urban, J.: MizAR 40 for Mizar 40. J. Autom. Reason. 55(3), 245–256 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Kaliszyk, C., Wiedijk, F.: Merging procedural and declarative proof. In: Berardi, S., Damiani, F., de’Liguoro, U. (eds.) Types for Proofs and Programs, International Conference, TYPES 2008, Volume 5497 of LNCS, pp. 203–219. Springer, Berlin (2008)Google Scholar
  40. 40.
    Kobayashi, N. (ed.): Proceedings Eighth Workshop on Intersection Types and Related Systems, ITRS 2016, Volume 242 of EPTCS (2017)Google Scholar
  41. 41.
    Korniłowicz, A.: Flexary connectives in Mizar. Comput. Lang. Syst. Struct. 44, 238–250 (2015)zbMATHGoogle Scholar
  42. 42.
    Korniłowicz, A., Schwarzweller, C.: Computers and algorithms in Mizar. Mech. Math. Appl. 4(1), 43–50 (2005)Google Scholar
  43. 43.
    Krauss, A., Schropp, A.: A mechanized translation from higher-order logic to set theory. In: Kaufmann, M., Paulson, L.C. (eds.) Interactive Theorem Proving (ITP 2010), Volume 6172 of LNCS, pp. 323–338. Springer, Berlin (2010)Google Scholar
  44. 44.
    Kuncar, O., Popescu, A.: A consistent foundation for Isabelle/HOL. In: Urban, C., Zhang, X. (eds.) Interactive Theorem Proving - 6th International Conference, ITP 2015, Volume 9236 of LNCS, pp. 234–252. Springer, Berlin (2015)Google Scholar
  45. 45.
    Kuncar, O., Popescu, A.: Safety and conservativity of definitions in HOL and Isabelle/HOL. PACMPL 2((POPL)), 24:1–24:26 (2018)Google Scholar
  46. 46.
    Kunčar, O.: Reconstruction of the Mizar type system in the HOL light system. In: Pavlu, J., Safrankova, J. (eds.) WDS Proceedings of Contributed Papers: Part I—Mathematics and Computer Sciences, pp. 7–12. Matfyzpress (2010)Google Scholar
  47. 47.
    Lee, G., Rudnicki, P.: Alternative aggregates in Mizar. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) Proceedings of 6th International Conference on Mathematical Knowledge Management (MKM 2007), Volume 4573 of LNCS, pp. 327–341. Springer (2007)Google Scholar
  48. 48.
    Megill, N.D.: Metamath: A Computer Language for Pure Mathematics. Lulu Press, Morrisville (2007)Google Scholar
  49. 49.
    Merz, S.: Mechanizing TLA in Isabelle. In: Rodošek, R. (ed.) Workshop on Verification in New Orientations, pp. 54–74. University of Maribor, Maribor (1995)Google Scholar
  50. 50.
    Nakamura, Y., Trybulec, A.: A mathematical model of CPU. Formaliz. Math. 3(2), 151–160 (1992)Google Scholar
  51. 51.
    Naraschewski, W., Wenzel, M.: Object-oriented verification based on record subtyping in higher-order logic. In: Grundy, J., Newey, M.C. (eds) Theorem Proving in Higher Order Logics, 11th International Conference, TPHOLs’98, volume 1479 of LNCS, pp. 349–366. Springer, Berlin (1998)Google Scholar
  52. 52.
    Naumowicz, A.: Enhanced processing of adjectives in Mizar. In: Grabowski, A., Naumowicz, A. (eds.) Computer Reconstruction of the Body of Mathematics, Volume 18(31) of Studies in Logic, Grammar and Rhetoric, pp. 89–101. University of Białystok, Białystok (2009)Google Scholar
  53. 53.
    Naumowicz, A.: Automating boolean set operations in Mizar proof checking with the aid of an external SAT solver. J. Autom. Reason. 55(3), 285–294 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Naumowicz, A., Byliński, C.: Improving Mizar texts with properties and requirements. In: Asperti et al. [5], pp. 290–301Google Scholar
  55. 55.
    Naumowicz, A., Korniłowicz, A.: A brief overview of Mizar. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) Theorem Proving in Higher Order Logics, TPHOLS, Volume 5674 of LNCS, pp. 67–72. Springer, Berlin (2009)CrossRefGoogle Scholar
  56. 56.
    Naumowicz, A., Piliszek, R.: Accessing the Mizar library with a weakly strict Mizar parser. In: Kohlhase, M., Johansson, M., Miller, B.R., de Moura, L., Tompa, F.W. (eds.) Intelligent Computer Mathematics, CICM 2016, Volume 9791 of LNCS, pp. 77–82. Springer, Berlin (2016)Google Scholar
  57. 57.
    Obua, S.: Partizan games in Isabelle/HOLZF. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.) Theoretical Aspects of Computing—ICTAC 2006, Volume 4281 of LNCS, pp. 272–286. Springer, Berlin (2006)Google Scholar
  58. 58.
    Obua, S., Fleuriot, J.D., Scott, P., Aspinall, D.: ProofPeer: collaborative theorem proving. CoRR. arXiv:1404.6186 (2014)
  59. 59.
    Obua, S., Fleuriot, J.D., Scott, P., Aspinall, D.: Type Inference for ZFH. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) Intelligent Computer Mathematics—International Conference, CICM, Volume 9150 of LNCS, pp. 87–101. Springer (2015)Google Scholar
  60. 60.
    Ono, K.: On a practical way of describing formal deductions. Nagoya Math. J. 21, 115–121 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Paulson, L.C.: Isabelle: the next 700 theorem provers. In: Odifreddi, P. (ed.) Logic and Computer Science (1990), pp. 361–386 (1990)Google Scholar
  62. 62.
    Paulson, L.C.: Set theory for verification: I. From foundations to functions. J. Autom. Reason. 11(3), 353–389 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Pąk, K.: Topological manifolds. Formaliz. Math. 22(2), 179–186 (2014)CrossRefGoogle Scholar
  64. 64.
    Rabe, F.: A logical framework combining model and proof theory. Math. Struct. Comput. Sci. 23(5), 945–1001 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Rudnicki, P.: Obvious inferences. J. Autom. Reason. 3(4), 383–393 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Schürmann, C.: The Twelf proof assistant. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) Theorem Proving in Higher Order Logics, 22nd International Conference, TPHOLs 2009, Volume 5674 of LNCS, pp. 79–83. Springer, Berlin (2009)Google Scholar
  67. 67.
    Syme, D.: Three tactic theorem proving. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin-Mohring, C., Théry, L. (eds.) Theorem Proving in Higher Order Logics, TPHOLs 1999, Volume 1690 of LNCS, pp. 203–220. Springer, Berlin (1999)Google Scholar
  68. 68.
    Trybulec, A., Korniłowicz, A., Naumowicz, A., Kuperberg, K.T.: Formal mathematics for mathematicians—special issue. J. Autom. Reason. 50(2), 119–121 (2013)MathSciNetCrossRefGoogle Scholar
  69. 69.
    Urban, J.: MPTP—motivation, implementation, first experiments. J. Autom. Reason. 33(3–4), 319–339 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Urban, J.: XML-izing Mizar: making semantic processing and presentation of MML easy. In: Kohlhase, M. (ed.) Mathematical Knowledge Management (MKM 2005), Volume 3863 of LNCS, pp. 346–360. Springer, Berlin (2005)Google Scholar
  71. 71.
    Urban, J.: MizarMode—an integrated proof assistance tool for the Mizar way of formalizing mathematics. J. Appl. Logic 4(4), 414–427 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    Urban, J.: MoMM—fast interreduction and retrieval in large libraries of formalized mathematics. Int. J. Artif. Intell. Tools 15(1), 109–130 (2006)CrossRefGoogle Scholar
  73. 73.
    Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom. Reason. 37(1–2), 21–43 (2006)zbMATHGoogle Scholar
  74. 74.
    Urban, J., Bancerek, G.: Presenting and explaining Mizar. Electr. Notes Theor. Comput. Sci. 174(2), 63–74 (2007)CrossRefzbMATHGoogle Scholar
  75. 75.
    Urban, J., Hoder, K., Voronkov, A.: Evaluation of automated theorem proving on the Mizar Mathematical Library. In: Fukuda, K., van der Hoeven, J., Joswig, M., Takayama, N. (eds.) International Congress on Mathematical Software (ICMS 2010), Volume 6327 of LNCS, pp. 155–166. Springer, Berlin (2010)Google Scholar
  76. 76.
    Urban, J., Rudnicki, P., Sutcliffe, G.: ATP and presentation service for Mizar formalizations. J. Autom. Reason. 50(2), 229–241 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  77. 77.
    Urban, J., Sutcliffe, G.: ATP-based cross-verification of Mizar proofs: method, systems, and first experiments. Math. Comput. Sci. 2(2), 231–251 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  78. 78.
    Weidenbach, C., Afshordel, B., Brahm, U., Cohrs, C., Engel, T., Keen, E., Theobalt, C., Topić, D.: System description: SPASS version 1.0.0. In: Automated Deduction - CADE-16, volume 1632 of LNCS, pp. 378–382. Springer (1999).
  79. 79.
    Wenzel, M.: Isar—a generic interpretative approach to readable formal proof documents. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) Theorem Proving in Higher Order Logics, 12th International Conference, TPHOLs 1999, Volume 1690 of LNCS, pp. 167–184. Springer (1999)Google Scholar
  80. 80.
    Wenzel, M.: Asynchronous user interaction and tool integration in Isabelle/PIDE. In: Klein, G., Gamboa, R. (eds.) Interactive Theorem Proving, ITP 2014, Volume 8558 of LNCS, pp. 515–530. Springer, Berlin (2014)Google Scholar
  81. 81.
    Wenzel, M.: The Isabelle/Isar reference manual (2017)Google Scholar
  82. 82.
    Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle framework. In: Mohamed, O.A., Muñoz, C.A., Tahar, S. (eds.) Theorem Proving in Higher Order Logics, 21st International Conference, TPHOLs 2008, Volume 5170 of LNCS, pp. 33–38. Springer (2008)Google Scholar
  83. 83.
    Wenzel, M., Wiedijk, F.: A comparison of Mizar and Isar. J. Autom. Reason. 29(3–4), 389–411 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  84. 84.
    Wiedijk, F.: CHECKER—notes on the basic inference step in Mizar. (2000). Accessed 25 Aug 2018
  85. 85.
    Wiedijk, F.: Mizar light for HOL light. In: Boulton, R.J., Jackson, P.B. (eds.) Theorem Proving in Higher Order Logics, TPHOLs 2001, Volume 2152 of LNCS, pp. 378–394. Springer, Berlin (2001)Google Scholar
  86. 86.
    Wiedijk, F.: A synthesis of the procedural and declarative styles of interactive theorem proving. Log. Methods Comput. Sci. 8(1:30), 1–26 (2012)Google Scholar
  87. 87.
    Zhan, B.: Formalization of the fundamental group in untyped set theory using auto2. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) Interactive Theorem Proving—ITP 2017, Volume 10499 of LNCS, pp. 514–530. Springer, Berlin (2017)Google Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of InnsbruckInnsbruckAustria
  2. 2.Institute of InformaticsUniversity of BiałystokBiałystokPoland

Personalised recommendations