Advertisement

Journal of Automated Reasoning

, Volume 60, Issue 4, pp 421–463 | Cite as

Sentence-Normalized Conditional Narrowing Modulo in Rewriting Logic and Maude

  • Luis Aguirre
  • Narciso Martí-Oliet
  • Miguel Palomino
  • Isabel Pita
Article
  • 118 Downloads

Abstract

This work studies the relationship between verifiable and computable answers for reachability problems in rewrite theories with an underlying membership equational logic. A new definition for RA-rewriting that allows us to solve a bigger class of reachability problems, and a calculus that solves this class of problems always working with canonical terms and normalized substitutions has been developed. Given a reachability problem in a rewrite theory, this calculus can compute any normalized answer that can be checked by rewriting, or a more general one that can be instantiated to that answer.

Keywords

Maude Narrowing Reachability Rewriting logic Membership equational logic Unification 

Notes

Acknowledgements

We are very grateful to the referees for their comments to improve the paper, to Santiago Escobar for all his advice, and to José Meseguer for inspiration.

References

  1. 1.
    Antoy, S., Echahed, R., Hanus, M.: A needed narrowing strategy. In: Boehm, H.-J., Lang, B., Yellin, D. M. (eds.) Conference Record of POPL’94: 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Portland, Oregon, USA, January 17–21, 1994, pp. 268–279. ACM Press (1994)Google Scholar
  2. 2.
    Aguirre, L., Martí-Oliet, N., Palomino, M., Pita, I.: Conditional narrowing modulo in rewriting logic and Maude. In: Escobar [19], pp. 80–96Google Scholar
  3. 3.
    Boolos, G., Jeffrey, R.C.: Computability and Logic, 2nd edn. Cambridge University Press, New York (1987)zbMATHGoogle Scholar
  4. 4.
    Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories. Theoret. Comput. Sci. 360(1–3), 386–414 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bae, K., Meseguer, J.: Model checking LTLR formulas under localized fairness. In: Durán, F. (ed.) Rewriting Logic and Its Applications—9th International Workshop, WRLA 2012, Held as a Satellite Event of ETAPS, Tallinn, Estonia, March 24–25, 2012, Revised Selected Papers, volume 7571 of Lecture Notes in Computer Science, pp. 99–117. Springer (2012)Google Scholar
  6. 6.
    Bae, K., Meseguer, J.: Infinite-state model checking of LTLR formulas using narrowing. In: Escobar [19], pp. 113–129Google Scholar
  7. 7.
    Bockmayr, A.: Conditional narrowing modulo a set of equations. Appl. Algebra Eng. Commun. Comput. 4, 147–168 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Quesada, J.F.: Maude: specification and programming in rewriting logic. Theoret. Comput. Sci. 285(2), 187–243 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude—A High-Performance Logical Framework: How to Specify, Program, and Verify Systems in Rewriting Logic, vol. 4350 of Lecture Notes in Computer Science. Springer (2007)Google Scholar
  10. 10.
    Clavel, M., Durán, F., Hendrix, J., Lucas, S., Meseguer, J., Ölveczky, P.C.: The maude formal tool environment. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) Algebra and Coalgebra in Computer Science, Second International Conference, CALCO 2007, Bergen, Norway, August 20–24, 2007, Proceedings, vol. 4624 of Lecture Notes in Computer Science, pp. 173–178. Springer (2007)Google Scholar
  11. 11.
    Cholewa, A., Escobar, S., Meseguer, J.: Constrained Narrowing for Conditional Equational Theories Modulo Axioms. Technical report. C.S. Department, University of Illinois at Urbana-Champaign. http://hdl.handle.net/2142/50289 (August 2014)
  12. 12.
    Comon, H.: Completion of rewrite systems with membership constraints. Part I: deduction rules. J. Symb. Comput. 25(4), 397–419 (1998)CrossRefzbMATHGoogle Scholar
  13. 13.
    Comon, H.: Completion of rewrite systems with membership constraints. Part II: constraint solving. J. Symb. Comput. 25(4), 421–453 (1998)CrossRefzbMATHGoogle Scholar
  14. 14.
    Durán, F., Lucas, S., Marché, C., Meseguer, J., Urbain, X.: Proving operational termination of membership equational programs. High. Order Symb. Comput. 21(1–2), 59–88 (2008)CrossRefzbMATHGoogle Scholar
  15. 15.
    Durán, F., Lucas, S., Meseguer, J.: MTT: The Maude termination tool (system description). In: Armando, A., Baumgartner, P., Dowek, G.(eds.) Automated Reasoning, 4th International Joint Conference, IJCAR 2008, Sydney, Australia, August 12–15, 2008, Proceedings, vol. 5195 of Lecture Notes in Computer Science, pp. 313–319. Springer (2008)Google Scholar
  16. 16.
    Durán, F., Meseguer, J.: On the Church–Rosser and coherence properties of conditional order-sorted rewrite theories. J. Logic Algebr. Program. 81(7–8), 816–850 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Durán, F., Meseguer, J.: On the Church–Rosser and coherence properties of conditional order-sorted rewrite theories. J. Log. Algebr. Program. 81(7–8), 816–850 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) Foundations of Security Analysis and Design V, vol. 5705 of Lecture Notes in Computer Science, pp. 1–50. Springer (2009)Google Scholar
  19. 19.
    Escobar, S. (ed.): Rewriting Logic and Its Applications—10th International Workshop, WRLA 2014, Held as a Satellite Event of ETAPS, Grenoble, France, April 5–6, 2014, Revised Selected Papers, vol. 8663 of Lecture Notes in Computer Science. Springer (2014)Google Scholar
  20. 20.
    Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant termination. J. Log. Algebr. Program. 81(7–8), 898–928 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Fay, M.: First-order unification in Equational Theory. In: Proceedings of 4th Workshop on Automated Deduction. Academic Press, Austin, pp. 161–167 (1979)Google Scholar
  22. 22.
    Feuillade, G., Genet, T.: Reachability in conditional term rewriting systems. Electron. Notes Theoret. Comput. Sci. 86(1), 133–146 (2003)CrossRefzbMATHGoogle Scholar
  23. 23.
    Fribourg, L.: SLOG: a logic programming language interpreter based on clausal superposition and rewriting. In: Proceedings of the 1985 Symposium on Logic Programming, Boston, Massachusetts, USA, July 15–18, 1985, pp. 172–184. IEEE-CS (1985)Google Scholar
  24. 24.
    Gnaedig, I., Kirchner, H.: Narrowing, abstraction and constraints for proving properties of reduction relations. In: Comon-Lundh, H., Kirchner, C., Kirchner, H. (eds.) Rewriting, Computation and Proof, Essays Dedicated to Jean-Pierre Jouannaud on the Occasion of His 60th Birthday, vol. 4600 of Lecture Notes in Computer Science, pp. 44–67. Springer (2007)Google Scholar
  25. 25.
    Giovannetti, E., Moiso, C.: A completeness result for e-unification algorithms based on conditional narrowing. In: Boscarol, M., Aiello, L.C., Levi, G. (eds.) Foundations of Logic and Functional Programming, Workshop, Trento, Italy, December 15–19, 1986, Proceedings, vol. 306 of Lecture Notes in Computer Science, pp. 157–167. Springer (1986)Google Scholar
  26. 26.
    Hamada, M.: Strong completeness of a narrowing calculus for conditional rewrite systems with extra variables. Electron. Notes Theoret. Comput. Sci. 31, 89–103 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Hullot, J.-M.: Canonical forms and unification. In: Bibel, W., Kowalski, R.A. (eds.) 5th Conference on Automated Deduction, Les Arcs, France, July 8–11, 1980, Proceedings, vol. 87 of Lecture Notes in Computer Science, pp. 318–334. Springer (1980)Google Scholar
  28. 28.
    Kirchner, C., Kirchner, H., Nahon, F.: Narrowing based inductive proof search. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics—Essays in Memory of Harald Ganzinger, vol. 7797 of Lecture Notes in Computer Science, pp. 216–238. Springer (2013)Google Scholar
  29. 29.
    Kirchner, H., Ringeissen, C.: Constraint solving by narrowing in combined algebraic domains. In: Van Hentenryck, P. (ed) Logic Programming, Proceedings of the Eleventh International Conference on Logic Programming, Santa Marherita Ligure, Italy, June 13–18, 1994, pp. 617–631. MIT Press (1994)Google Scholar
  30. 30.
    Lucas, S., Meseguer, J.: Operational termination of membership equational programs: the order-sorted way. Electron. Notes Theoret. Comput. Sci. 238(3), 207–225 (2009)CrossRefzbMATHGoogle Scholar
  31. 31.
    Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Inf. Process. Lett. 95(4), 446–453 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Meseguer, J.: Rewriting as a unified model of concurrency. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR ’90 Theories of Concurrency: Unification and Extension, vol. 458 of Lecture Notes in Computer Science, pp. 384–400. Springer (1990)Google Scholar
  33. 33.
    Meseguer, J.: Membership algebra as a logical framework for equational specification. In: Parisi-Presicce, F. (ed) Recent Trends in Algebraic Development Techniques, 12th International Workshop, WADT’97, Tarquinia, Italy, June 1997, Selected Papers, vol. 1376 of Lecture Notes in Computer Science, pp. 18–61. Springer (1997)Google Scholar
  34. 34.
    Meseguer, J.: Twenty years of rewriting logic. J. Log. Algebr. Program. 81(7–8), 721–781 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Meseguer, J.: Strict Coherence of Conditional Rewriting Modulo Axioms. Technical report, C.S. Department, University of Illinois at Urbana-Champaign. http://hdl.handle.net/2142/50288 (August 2014)
  36. 36.
    Middeldorp, A., Hamoen, E.: Completeness results for basic narrowing. Appl. Algebra Eng. Commun. Comput. 5, 213–253 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Martí-Oliet, N., Meseguer, J.: Rewriting logic: roadmap and bibliography. Theoret. Comput. Sci. 285(2), 121–154 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Meseguer, J., Thati, P.: Symbolic reachability analysis using narrowing and its application to verification of cryptographic protocols. High. Order Symb. Comput. 20(1–2), 123–160 (2007)CrossRefzbMATHGoogle Scholar
  39. 39.
    Plotkin, G.: Building in equational theories. Mach. Intell. 7, 73–90 (1972)zbMATHGoogle Scholar
  40. 40.
    Rocha, C., Meseguer, J., Muñoz, C.: Rewriting modulo SMT and open system analysis. In: Escobar [19], pp. 247–262Google Scholar
  41. 41.
    Viry, P.: Rewriting: an effective model of concurrency. In: Halatsis, C., Maritsas, D. G., Philokyprou, G., Theodoridis, S. (eds.) PARLE ’94: Parallel Architectures and Languages Europe, 6th International PARLE Conference, Athens, Greece, July 4–8, 1994, Proceedings, vol. 817 of Lecture Notes in Computer Science, pp. 648–660. Springer (1994)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Luis Aguirre
    • 1
  • Narciso Martí-Oliet
    • 1
  • Miguel Palomino
    • 1
  • Isabel Pita
    • 1
  1. 1.Facultad de InformáticaUniversidad Complutense de MadridMadridSpain

Personalised recommendations