A Complete Uniform Substitution Calculus for Differential Dynamic Logic

Abstract

This article introduces a relatively complete proof calculus for differential dynamic logic (dL) that is entirely based on uniform substitution, a proof rule that substitutes a formula for a predicate symbol everywhere. Uniform substitutions make it possible to use axioms instead of axiom schemata, thereby substantially simplifying implementations. Instead of subtle schema variables and soundness-critical side conditions on the occurrence patterns of logical variables to restrict infinitely many axiom schema instances to sound ones, the resulting calculus adopts only a finite number of ordinary dLformulas as axioms, which uniform substitutions instantiate soundly. The static semantics of differential dynamic logic and the soundness-critical restrictions it imposes on proof steps is captured exclusively in uniform substitutions and variable renamings as opposed to being spread in delicate ways across the prover implementation. In addition to sound uniform substitutions, this article introduces differential forms for differential dynamic logic that make it possible to internalize differential invariants, differential substitutions, and derivatives as first-class axioms to reason about differential equations axiomatically. The resulting axiomatization of differential dynamic logic is proved to be sound and relatively complete.

References

  1. 1.

    Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5(2), 56–68 (1940)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Church, A.: Introduction to Mathematical Logic, vol. I. Princeton University Press, Princeton, NJ (1956)

    MATH  Google Scholar 

  3. 3.

    Cimatti, A., Roveri, M., Tonetta, S.: HRELTL: a temporal logic for hybrid systems. Inf. Comput. 245, 54–71 (2015). doi:10.1016/j.ic.2015.06.006

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Davoren, J.M., Nerode, A.: Logics for hybrid systems. IEEE 88(7), 985–1010 (2000)

    Article  Google Scholar 

  5. 5.

    Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. J. Autom. Reas. 31(1), 33–72 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Fulton, N., Mitsch, S., Quesel, J.D., Völp, M., Platzer, A.: KeYmaera X: an axiomatic tactical theorem prover for hybrid systems. In: Felty, A., Middeldorp, A. (eds.) CADE, LNCS, vol. 9195, pp. 527–538. Springer, Berlin (2015). doi:10.1007/978-3-319-21401-6_36

    Google Scholar 

  7. 7.

    Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge, MA (2000)

    MATH  Google Scholar 

  8. 8.

    Henkin, L.: Banishing the rule of substitution for functional variables. J. Symb. Log. 18(3), 201–208 (1953)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Hughes, G.E., Cresswell, M.J.: A New Introduction to Modal Logic. Routledge, London (1996)

    Book  MATH  Google Scholar 

  10. 10.

    Liu, J., Lv, J., Quan, Z., Zhan, N., Zhao, H., Zhou, C., Zou, L.: A calculus for hybrid CSP. In: Ueda, K. (ed.) APLAS, LNCS, vol. 6461, pp. 1–15. Springer, Berlin (2010). doi:10.1007/978-3-642-17164-2_1

    Google Scholar 

  11. 11.

    Pfenning, F.: Logical frameworks. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 1063–1147. MIT Press, Cambridge, MA (2001)

    Chapter  Google Scholar 

  12. 12.

    Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2), 143–189 (2008). doi:10.1007/s10817-008-9103-8

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs. J. Log. Comput. 20(1), 309–352 (2010). doi:10.1093/logcom/exn070

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Platzer, A.: The complete proof theory of hybrid systems. In: LICS, pp. 541–550. IEEE (2012). doi:10.1109/LICS.2012.64

  15. 15.

    Platzer, A.: The structure of differential invariants and differential cut elimination. Log. Meth. Comput. Sci. 8(4), 1–38 (2012). doi:10.2168/LMCS-8(4:16)2012

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Platzer, A.: Differential game logic. ACM Trans. Comput. Log. 17(1), 1:1–1:51 (2015). doi:10.1145/2817824

    MathSciNet  Article  Google Scholar 

  17. 17.

    Platzer, A.: Differential Hybrid Games. CoRR arXiv:1507.04943 (2015)

  18. 18.

    Platzer, A.: A uniform substitution calculus for differential dynamic logic. In: Felty, A., Middeldorp, A. (eds.) CADE, LNCS, vol. 9195, pp. 467–481. Springer, Berlin (2015). doi:10.1007/978-3-319-21401-6_32

    Google Scholar 

  19. 19.

    Platzer, A., Quesel, J.D.: KeYmaera: a hybrid theorem prover for hybrid systems. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR, LNCS, vol. 5195, pp. 171–178. Springer, Berlin (2008). doi:10.1007/978-3-540-71070-7_15

    Google Scholar 

  20. 20.

    Rice, H.G.: Classes of recursively enumerable sets and their decision problems. Trans. AMS 89, 25–59 (1953)

    MATH  Google Scholar 

  21. 21.

    Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn. University of California Press, Berkeley (1951)

    MATH  Google Scholar 

  22. 22.

    Walter, W.: Analysis 1. Springer, Berlin (1985)

    Google Scholar 

  23. 23.

    Walter, W.: Analysis 2, 4th edn. Springer, Berlin (1995)

    Book  Google Scholar 

  24. 24.

    Walter, W.: Ordinary Differential Equations. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to André Platzer.

Additional information

An extended abstract has appeared at CADE [18].

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Platzer, A. A Complete Uniform Substitution Calculus for Differential Dynamic Logic. J Autom Reasoning 59, 219–265 (2017). https://doi.org/10.1007/s10817-016-9385-1

Download citation

Keywords

  • Differential dynamic logic
  • Uniform substitution
  • Axioms
  • Differentials
  • Static semantics
  • Axiomatization