Journal of Automated Reasoning

, Volume 59, Issue 2, pp 219–265 | Cite as

A Complete Uniform Substitution Calculus for Differential Dynamic Logic

Open Access
Article

Abstract

This article introduces a relatively complete proof calculus for differential dynamic logic (dL) that is entirely based on uniform substitution, a proof rule that substitutes a formula for a predicate symbol everywhere. Uniform substitutions make it possible to use axioms instead of axiom schemata, thereby substantially simplifying implementations. Instead of subtle schema variables and soundness-critical side conditions on the occurrence patterns of logical variables to restrict infinitely many axiom schema instances to sound ones, the resulting calculus adopts only a finite number of ordinary dLformulas as axioms, which uniform substitutions instantiate soundly. The static semantics of differential dynamic logic and the soundness-critical restrictions it imposes on proof steps is captured exclusively in uniform substitutions and variable renamings as opposed to being spread in delicate ways across the prover implementation. In addition to sound uniform substitutions, this article introduces differential forms for differential dynamic logic that make it possible to internalize differential invariants, differential substitutions, and derivatives as first-class axioms to reason about differential equations axiomatically. The resulting axiomatization of differential dynamic logic is proved to be sound and relatively complete.

Keywords

Differential dynamic logic Uniform substitution Axioms Differentials Static semantics Axiomatization 

References

  1. 1.
    Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5(2), 56–68 (1940)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Church, A.: Introduction to Mathematical Logic, vol. I. Princeton University Press, Princeton, NJ (1956)MATHGoogle Scholar
  3. 3.
    Cimatti, A., Roveri, M., Tonetta, S.: HRELTL: a temporal logic for hybrid systems. Inf. Comput. 245, 54–71 (2015). doi:10.1016/j.ic.2015.06.006 MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Davoren, J.M., Nerode, A.: Logics for hybrid systems. IEEE 88(7), 985–1010 (2000)CrossRefGoogle Scholar
  5. 5.
    Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. J. Autom. Reas. 31(1), 33–72 (2003)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Fulton, N., Mitsch, S., Quesel, J.D., Völp, M., Platzer, A.: KeYmaera X: an axiomatic tactical theorem prover for hybrid systems. In: Felty, A., Middeldorp, A. (eds.) CADE, LNCS, vol. 9195, pp. 527–538. Springer, Berlin (2015). doi:10.1007/978-3-319-21401-6_36 Google Scholar
  7. 7.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge, MA (2000)MATHGoogle Scholar
  8. 8.
    Henkin, L.: Banishing the rule of substitution for functional variables. J. Symb. Log. 18(3), 201–208 (1953)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Hughes, G.E., Cresswell, M.J.: A New Introduction to Modal Logic. Routledge, London (1996)CrossRefMATHGoogle Scholar
  10. 10.
    Liu, J., Lv, J., Quan, Z., Zhan, N., Zhao, H., Zhou, C., Zou, L.: A calculus for hybrid CSP. In: Ueda, K. (ed.) APLAS, LNCS, vol. 6461, pp. 1–15. Springer, Berlin (2010). doi:10.1007/978-3-642-17164-2_1 Google Scholar
  11. 11.
    Pfenning, F.: Logical frameworks. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 1063–1147. MIT Press, Cambridge, MA (2001)CrossRefGoogle Scholar
  12. 12.
    Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2), 143–189 (2008). doi:10.1007/s10817-008-9103-8 MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs. J. Log. Comput. 20(1), 309–352 (2010). doi:10.1093/logcom/exn070 MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Platzer, A.: The complete proof theory of hybrid systems. In: LICS, pp. 541–550. IEEE (2012). doi:10.1109/LICS.2012.64
  15. 15.
    Platzer, A.: The structure of differential invariants and differential cut elimination. Log. Meth. Comput. Sci. 8(4), 1–38 (2012). doi:10.2168/LMCS-8(4:16)2012 MathSciNetMATHGoogle Scholar
  16. 16.
    Platzer, A.: Differential game logic. ACM Trans. Comput. Log. 17(1), 1:1–1:51 (2015). doi:10.1145/2817824 MathSciNetCrossRefGoogle Scholar
  17. 17.
    Platzer, A.: Differential Hybrid Games. CoRR arXiv:1507.04943 (2015)
  18. 18.
    Platzer, A.: A uniform substitution calculus for differential dynamic logic. In: Felty, A., Middeldorp, A. (eds.) CADE, LNCS, vol. 9195, pp. 467–481. Springer, Berlin (2015). doi:10.1007/978-3-319-21401-6_32 Google Scholar
  19. 19.
    Platzer, A., Quesel, J.D.: KeYmaera: a hybrid theorem prover for hybrid systems. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR, LNCS, vol. 5195, pp. 171–178. Springer, Berlin (2008). doi:10.1007/978-3-540-71070-7_15 Google Scholar
  20. 20.
    Rice, H.G.: Classes of recursively enumerable sets and their decision problems. Trans. AMS 89, 25–59 (1953)MATHGoogle Scholar
  21. 21.
    Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn. University of California Press, Berkeley (1951)MATHGoogle Scholar
  22. 22.
    Walter, W.: Analysis 1. Springer, Berlin (1985)Google Scholar
  23. 23.
    Walter, W.: Analysis 2, 4th edn. Springer, Berlin (1995)CrossRefGoogle Scholar
  24. 24.
    Walter, W.: Ordinary Differential Equations. Springer, Berlin (1998)CrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Computer Science DepartmentCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations