Journal of Automated Reasoning

, Volume 59, Issue 2, pp 165–218 | Cite as

Semantically-Guided Goal-Sensitive Reasoning: Inference System and Completeness

Article

Abstract

We present a new method for clausal theorem proving, named SGGS from semantically-guided goal-sensitive reasoning. SGGS generalizes to first-order logic the conflict-driven clause learning (CDCL) procedure for propositional satisfiability. Starting from an initial interpretation, used for semantic guidance, SGGS employs a sequence of constrained clauses to represent a candidate model, instance generation to extend it, resolution and other inferences to explain and solve conflicts, amending the model. We prove that SGGS is refutationally complete and model complete in the limit, regardless of initial interpretation. SGGS is also goal sensitive, if the initial interpretation is properly chosen, and proof confluent, because it repairs the current model without undoing steps by backtracking. Thus, SGGS is a complete first-order method that is simultaneously model-based à la CDCL, semantically-guided, goal-sensitive, and proof confluent.

Keywords

Theorem proving Conflict-driven clause learning Semantic guidance Refutational completeness Goal sensitivity 

Notes

Acknowledgments

An abstract of an early version of this work was presented at the Meeting of the IFIP Working Group 1.6 on Rewriting at the Sixth Federated Logic Conference (FLoC) at the Vienna Summer of Logic in July 2014. This article was completed when the first author was an international fellow at the Computer Science Laboratory of SRI International in Menlo Park, and also during a visit at Microsoft Research in Redmond: the support of both institutions is gratefully acknowledged. We thank the reviewers for their comments that helped us improve our manuscript.

References

  1. 1.
    Alagi, G., Weidenbach, C.: NRCL—a model building approach to the Bernays–Schönfinkel fragment. In: Lutz, C., Ranise, S. (eds.) Proceedings of the 10th International Symposium on Frontiers of Combining Systems (FroCoS). Lecture Notes in Artificial Intelligence, vol. 9322, pp. 69–84. Springer, Berlin (2015)CrossRefGoogle Scholar
  2. 2.
    Baumgartner, P.: Hyper tableaux—the next generation. In: de Swart, H. (ed.) Proceedings of the 7th International Conference on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX). Lecture Notes in Artificial Intelligence, vol. 1397, pp. 60–76. Springer, Berlin (1998)CrossRefGoogle Scholar
  3. 3.
    Baumgartner, P.: FDPLL—a first-order Davis–Putnam–Logeman–Loveland procedure. In: McAllester, D. (ed.) Proceedings of the 17th International Conference on Automated Deduction (CADE). Lecture Notes in Artificial Intelligence, vol. 1831, pp. 200–219. Springer, Berlin (2000)Google Scholar
  4. 4.
    Baumgartner, P.: Logical engineering with instance-based methods. In: Pfenning, F. (ed.) Proceedings of the 21st International Conference on Automated Deduction (CADE). Lecture Notes in Artificial Intelligence, vol. 4603, pp. 404–409. Springer, Berlin (2007)Google Scholar
  5. 5.
    Baumgartner, P., Fuchs, A., Tinelli, C.: Implementing the model evolution calculus. Int. J. Artif. Intell. Tools 15(1), 21–52 (2006)CrossRefMATHGoogle Scholar
  6. 6.
    Baumgartner, P., Fuchs, A., Tinelli, C.: Lemma learning in the model evolution calculus. In: Hermann, M., Voronkov, A. (eds.) Proceedings of the 13th Conference on Logic, Programming and Automated Reasoning (LPAR). Lecture Notes in Artificial Intelligence, vol. 4246, pp. 572–586. Springer, Berlin (2006)Google Scholar
  7. 7.
    Baumgartner, P., Pelzer, B., Tinelli, C.: Model evolution calculus with equality—revised and implemented. J. Symb. Comput. 47(9), 1011–1045 (2012)CrossRefMATHGoogle Scholar
  8. 8.
    Baumgartner, P., Tinelli, C.: The model evolution calculus as a first-order DPLL method. Artif. Intell. 172(4–5), 591–632 (2008)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Baumgartner, P., Waldmann, U.: Superposition and model evolution combined. In: Schmidt, R. (ed.) Proceedings of the 22nd International Conference on Automated Deduction (CADE). Lecture Notes in Artificial Intelligence, vol. 5663, pp. 17–34. Springer, Berlin (2009)Google Scholar
  10. 10.
    Bender, M., Pelzer, B., Schon, C.: E-KRHyper 1.4: extensions for unique names and description logic. In: Bonacina, M.P. (ed.) Proceedings of the 24th International Conference on Automated Deduction (CADE). Lecture Notes in Artificial Intelligence, vol. 7898, pp. 126–134. Springer, Berlin (2013)Google Scholar
  11. 11.
    Billon, J.-P.: The disconnection method. In: Miglioli, P., Moscato, U., Mundici, D., Ornaghi, M. (eds.) Proceedings of the 5th International Conference on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX). Lecture Notes in Artificial Intelligence, vol. 1071, pp. 110–126. Springer, Berlin (1996)Google Scholar
  12. 12.
    Bonacina, M.P.: A taxonomy of theorem-proving strategies. In: Wooldridge, M.J., Veloso, M. (eds.) Artificial Intelligence Today—Recent Trends and Developments. Lecture Notes in Artificial Intelligence, vol. 1600, pp. 43–84. Springer, Berlin (1999)Google Scholar
  13. 13.
    Bonacina, M.P., Echenim, M.: Theory decision by decomposition. J. Symb. Comput. 45(2), 229–260 (2010)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Bonacina, M.P., Furbach, U., Sofronie-Stokkermans, V.: On first-order model-based reasoning. In: Martí-Oliet, N., Olveczky, P., Talcott, C. (eds.) Logic, Rewriting, and Concurrency: Essays Dedicated to José Meseguer. Lecture Notes in Computer Science, vol. 9200, pp. 181–204. Springer, Berlin (2015)CrossRefGoogle Scholar
  15. 15.
    Bonacina, M.P., Lynch, C.A., de Moura, L.: On deciding satisfiability by theorem proving with speculative inferences. J. Autom. Reason. 47(2), 161–189 (2011)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Bonacina, M.P., Plaisted, D.A: Constraint manipulation in SGGS. In: Kutsia, T., Ringeissen, C. (eds.) Proceedings of the 28th Workshop on Unification (UNIF). Technical Reports of the Research Institute for Symbolic Computation, pp. 47–54. Johannes Kepler Universität, July (2014). http://vsl2014.at/meetings/UNIF-index.html
  17. 17.
    Bonacina, M.P., Plaisted, D.A.: SGGS theorem proving: an exposition. In: Schulz, S., De Moura, L., Konev, B. (eds.) Proceedings of the 4th Workshop on Practical Aspects in Automated Reasoning (PAAR) (2014). EasyChair Proceedings in Computing (EPiC), vol. 31, pp. 25–38 (2015)Google Scholar
  18. 18.
    Bonacina, M.P., Plaisted, D.A.: Semantically-guided goal-sensitive reasoning: model representation. J. Autom. Reason. 56(2), 113–141 (2016)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Chang, C.-L., Lee, R.C.-T.: Symbolic Logic and Mechanical Theorem Proving. Academic Press, Cambridge (1973)MATHGoogle Scholar
  20. 20.
    Chu, H., Plaisted, D.A.: Model finding in semantically guided instance-based theorem proving. Fundam. Inform. 21(3), 221–235 (1994)MathSciNetMATHGoogle Scholar
  21. 21.
    Chu, H., Plaisted, D.A.: CLINS-S: a semantically guided first-order theorem prover. J. Autom. Reason. 18(2), 183–188 (1997)CrossRefGoogle Scholar
  22. 22.
    Comon, H.: Disunification: a survey. In: Lassez, J.-L., Plotkin, G. (eds.) Computational Logic—Essays in Honor of Alan Robinson, pp. 322–359. MIT Press, Cambridge (1991)Google Scholar
  23. 23.
    Comon, H., Lescanne, P.: Equational problems and disunification. J. Symb. Comput. 7, 371–425 (1989)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Davis, M.: The Universal Computer. The Road from Leibniz to Turing. Turing Centenary Edition. Mathematics/Logic/Computing Series. CRC Press, Taylor and Francis Group (2012)Google Scholar
  25. 25.
    Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7, 201–215 (1960)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    de Moura, L., Bjørner, N.: Engineering DPLL(T) + saturation. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) Proceedings of the 4th International Conference on Automated Reasoning (IJCAR). Lecture Notes in Artificial Intelligence, vol. 5195, pp. 475–490. Springer, Berlin (2008)Google Scholar
  28. 28.
    Fietzke, A.: Labelled superposition. PhD thesis, Max Planck Institut für Informatik, Saabrücken, October (2013)Google Scholar
  29. 29.
    Fietzke, A., Weidenbach, C.: Labelled splitting. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) Proceedings of the 4th International Conference on Automated Reasoning (IJCAR). Lecture Notes in Artificial Intelligence, vol. 5195, pp. 459–474. Springer, Berlin (2008)Google Scholar
  30. 30.
    Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem proving. In: Proceedings of the 18th IEEE Symposium on Logic in Computer Science (LICS), pp. 55–64. IEEE Computer Society Press (2003)Google Scholar
  31. 31.
    Ganzinger, H., Korovin, K.: Theory instantiation. In: Hermann, M., Voronkov, A. (eds.) Proceedings of the 13th Conference on Logic, Programming and Automated Reasoning (LPAR). Lecture Notes in Artificial Intelligence, vol. 4246, pp. 497–511. Springer, Berlin (2006)Google Scholar
  32. 32.
    Hoder, K., Voronkov, A.: The 481 ways to split a clause and deal with propositional variables. In: Bonacina, M.P. (ed.) Proceedings of the 24th International Conference on Automated Deduction (CADE). Lecture Notes in Artificial Intelligence, vol. 7898, pp. 450–464. Springer, Berlin (2013)Google Scholar
  33. 33.
    Jacobs, S., Waldmann, U.: Comparing instance generation methods for automated reasoning. J. Autom. Reason. 38, 57–78 (2007)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech, J. (ed.) Proceedings of the Conference on Computational Problems in Abstract Algebras, pp. 263–298. Pergamon Press, Oxford (1970)Google Scholar
  35. 35.
    Korovin, K.: An invitation to instantiation-based reasoning: from theory to practice. In: Schmidt, R. (ed.) Proceedings of the 22nd International Conference on Automated Deduction (CADE). Lecture Notes in Artificial Intelligence, vol. 5663, pp. 163–166. Springer, Berlin (2009)Google Scholar
  36. 36.
    Korovin, K.: Inst-Gen: a modular approach to instantiation-based automated reasoning. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics: Essays in Memory of Harald Ganzinger. Lecture Notes in Artificial Intelligence, vol. 7797, pp. 239–270. Springer, Berlin (2013)CrossRefGoogle Scholar
  37. 37.
    Korovin, K., Sticksel, C.: iProver-Eq: an instantiation-based theorem prover with equality. In: Giesl, J., Hähnle, R. (eds.) Proceedings of the 5th International Conference on Automated Reasoning (IJCAR). Lecture Notes in Artificial Intelligence, vol. 6173, pp. 196–202. Springer, Berlin (2010)Google Scholar
  38. 38.
    Kovàcs, L., Voronkov, A.: First order theorem proving and Vampire. In: Sharygina, N., Veith, H. (eds.) Proceedings of the 25th International Conference on Computer-Aided Verification (CAV). Lecture Notes in Computer Science, vol. 8044, pp. 1–35. Springer, Berlin (2013)Google Scholar
  39. 39.
    Lee, S.-J., Plaisted, D.A.: Eliminating duplication with the hyperlinking strategy. J. Autom. Reason. 9, 25–42 (1992)CrossRefMATHGoogle Scholar
  40. 40.
    Letz, R., Stenz, G.: DCTP—a disconnection calculus theorem prover. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) Proceedings of the 1st International Joint Conference on Automated Reasoning (IJCAR). Lecture Notes in Artificial Intelligence, vol. 2083, pp. 381–385. Springer, Berlin (2001)Google Scholar
  41. 41.
    Letz, R., Stenz, G.: Proof and model generation with disconnection tableaux. In: Nieuwenhuis, R., Voronkov, A. (eds.) Proceedings of the 8th International Conference on Logic, Programming and Automated Reasoning (LPAR). Lecture Notes in Artificial Intelligence, vol. 2250, pp. 142–156. Springer, Berlin (2001)Google Scholar
  42. 42.
    Letz, R., Stenz, G.: Integration of equality reasoning into the disconnection calculus. In: Egly, U., Fermüller, C.G. (eds.) Proceedings of the 15th International Conference on Analytic Tableaux and Related Methods (TABLEAUX). Lecture Notes in Artificial Intelligence, vol. 2381, pp. 176–190. Springer, Berlin (2002)Google Scholar
  43. 43.
    Ludwig, M., Waldmann, U.: An extension of the Knuth–Bendix ordering with LPO-like properties. In: Dershowitz, N., Voronkov, A. (eds.) Proceedings of the 14th International Conference on Logic, Programming and Automated Reasoning (LPAR). Lecture Notes in Artificial Intelligence, vol. 4790, pp. 348–362. Springer, Berlin (2007)Google Scholar
  44. 44.
    Maher, M.J.: Complete axiomatizations of the algebras of finite, rational and infinite trees. Technical report, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA (1988)Google Scholar
  45. 45.
    Maher, M.J.: Complete axiomatizations of the algebras of finite, rational and infinite trees. In: Proceedings of the 3rd Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 348–457. IEEE Computer Society Press (1988)Google Scholar
  46. 46.
    Malik, S., Zhang, L.: Boolean satisfiability: from theoretical hardness to practical success. Commun. ACM 52(8), 76–82 (2009)CrossRefGoogle Scholar
  47. 47.
    Manthey, R., Bry, F.: SATCHMO: a theorem prover implemented in Prolog. In: Lusk, E., Overbeek, R. (eds.) Proceedings of the 9th International Conference on Automated Deduction (CADE). Lecture Notes in Computer Science, vol. 310, pp. 415–434. Springer, Berlin (1988)CrossRefGoogle Scholar
  48. 48.
    Marques Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In: Biere, A., Heule, M., Van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, vol. 185, pp. 131–153. IOS Press (2009)Google Scholar
  49. 49.
    Marques Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)MathSciNetCrossRefGoogle Scholar
  50. 50.
    McCune, W.W.: OTTER 3.0 reference manual and guide. Technical report 94/6, MCS Division, Argonne National Laboratory (1994)Google Scholar
  51. 51.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: Proceedings of the 39th Design Automation Conference (DAC), pp. 530–535 (2001)Google Scholar
  52. 52.
    Piskac, R., de Moura, L., Bjørner, N.: Deciding effectively propositional logic using DPLL and substitution sets. J. Autom. Reason. 44(4), 401–424 (2010)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Plaisted, D.A.: Mechanical theorem proving. In: Banerji, R.B. (ed.) Formal Techniques in Artificial Intelligence, pp. 269–320. Elsevier, Amsterdam (1990)Google Scholar
  54. 54.
    Plaisted, D.A., Miller, S.: The relative power of semantics and unification. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics: Essays in Memory of Harald Ganzinger. Lecture Notes in Artificial Intelligence, vol. 7797, pp. 317–344. Springer, Berlin (2013)CrossRefGoogle Scholar
  55. 55.
    Plaisted, D.A., Zhu, Y.: Ordered semantic hyper linking. J. Autom. Reason. 25, 167–217 (2000)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Reger, G., Suda, M., Voronkov, A.: Playing with AVATAR. In: Felty, A.P., Middeldorp, A. (eds.) Proceedings of the 25th International Conference on Automated Deduction (CADE). Lecture Notes in Artificial Intelligence, vol. 9195, pp. 399–415. Springer, Berlin (2015)Google Scholar
  57. 57.
    Riazanov, A.: Implementing an efficient theorem prover. PhD thesis, Department of Computer Science, The University of Manchester (July 2003)Google Scholar
  58. 58.
    Robinson, A.J.: Automatic deduction with hyper-resolution. Int. J. Comput. Math. 1, 227–234 (1965)MathSciNetMATHGoogle Scholar
  59. 59.
    Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) Proceedings of the 19th International Conference on Logic, Programming and Automated Reasoning (LPAR). Lecture Notes in Artificial Intelligence, vol. 8312, pp. 735–743. Springer, Berlin (2013)Google Scholar
  60. 60.
    Slagle, J.R.: Automatic theorem proving with renamable and semantic resolution. J. ACM 14(4), 687–697 (1967)MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 2, pp. 1965–2012. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  62. 62.
    Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS version 3.5. In: Schmidt, R. (ed.) Proceedings of the 22nd International Conference on Automated Deduction (CADE). Lecture Notes in Artificial Intelligence, vol. 5663, pp. 140–145. Springer, Berlin (2009)Google Scholar
  63. 63.
    Wos, L., Carson, D., Robinson, G.: Efficiency and completeness of the set of support strategy in theorem proving. J. ACM 12, 536–541 (1965)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Dipartimento di InformaticaUniversità degli Studi di VeronaVeronaItaly
  2. 2.Department of Computer ScienceUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations