Advertisement

Journal of Automated Reasoning

, Volume 58, Issue 2, pp 209–230 | Cite as

A Synthetic Proof of Pappus’ Theorem in Tarski’s Geometry

  • Gabriel Braun
  • Julien NarbouxEmail author
Article

Abstract

In this paper, we report on the formalization of a synthetic proof of Pappus’ theorem. We provide two versions of the theorem: the first one is proved in neutral geometry (without assuming the parallel postulate), the second (usual) version is proved in Euclidean geometry. The proof that we formalize is the one presented by Hilbert in The Foundations of Geometry, which has been described in detail by Schwabhäuser, Szmielew and Tarski in part I of Metamathematische Methoden in der Geometrie. We highlight the steps that are still missing in this later version. The proofs are checked formally using the Coq proof assistant. Our proofs are based on Tarski’s axiom system for geometry without any continuity axiom. This theorem is an important milestone toward obtaining the arithmetization of geometry, which will allow us to provide a connection between analytic and synthetic geometry.

Keywords

Formalization Formal proof Geometry Coq Pappus Tarski’s axioms 

References

  1. 1.
    Boutry, P., Braun, G., Narboux, J.: From Tarski to Descartes: formalization of the arithmetization of euclidean geometry. In: The 7th International Symposium on Symbolic Computation in Software (SCSS 2016), EasyChair Proceedings in Computing, p. 15. Tokyo, Japan (2016)Google Scholar
  2. 2.
    Beeson, M.: Proof and computation in geometry. In: Ida, T., Fleuriot, J. (eds.) Automated Deduction in Geometry (ADG 2012), Volume 7993 of Springer Lecture Notes in Artificial Intelligence, pp. 1–30. Springer, Heidelberg (2013)Google Scholar
  3. 3.
    Beeson, M.: A constructive version of Tarski’s geometry. Ann. Pure Appl. Log. 166(11), 1199–1273 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Behnke, H., Gould, S.H.: Fundamentals of Mathematics: Geometry. MIT Press, New York (1974)Google Scholar
  5. 5.
    Bezem, M., Hendriks, D.: On the mechanization of the proof of Hessenberg’s theorem in coherent logic. J. Autom. Reason. 40(1), 61–85 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Braun, G., Narboux, J.: From Tarski to Hilbert. In: Ida, T., Fleuriot, J. (eds.) Post-Proceedings of Automated Deduction in Geometry 2012, Volume 7993 of LNCS, pp. 89–109. Springer, Edinburgh (2012)Google Scholar
  7. 7.
    Boutry, P., Narboux, J., Schreck, P.: A Reflexive Tactic for Automated Generation of Proofs of Incidence to an Affine Variety. October (2015)Google Scholar
  8. 8.
    Boutry, P., Narboux, J., Schreck, P.: Parallel Postulates and Decidability of Intersection of Lines: A Mechanized Study Within Tarski’s System of Geometry. Submitted, July (2015)Google Scholar
  9. 9.
    Boutry, P., Narboux, J., Schreck, P., Braun, G.: Ashort note about case distinctions in Tarski’s geometry. In: Botana, F., Quaresma, P. (eds.) Automated Deduction in Geometry 2014, Proceedings of ADG 2014, pp. 1–15. Coimbra, Portugal (2014)Google Scholar
  10. 10.
    Boutry, P., Narboux, J., Schreck, P., Braun, G.: Using small scale automation to improve both accessibility andreadability of formal proofs in geometry. In: Botana, F., Quaresma, P. (eds.) Automated Deduction in Geometry2014, Proceedings of ADG 2014, pp. 1–19. Coimbra, Portugal (2014)Google Scholar
  11. 11.
    Castéran, P.: Coq + \(\epsilon \)? In: JFLA, pp. 1–15 (2007)Google Scholar
  12. 12.
    Dehlinger, C., Dufourd, J.-F., Schreck, P.: Higher-order intuitionistic formalization and proofs in Hilbert’s elementary geometry. In: Automated Deduction in Geometry (2000)Google Scholar
  13. 13.
    Grégoire, B., Pottier, L., Théry, L.: Proof certificates for algebra and their application to automatic geometry theorem proving. In: Post-Proceedings of Automated Deduction in Geometry (ADG 2008), Number 6701 in Lecture Notes in Artificial Intelligence (2011)Google Scholar
  14. 14.
    Hilbert, D.: Foundations of Geometry (Grundlagen der Geometrie). Open Court, La Salle, Illinois, 1960. Second English edition, translated from the tenth German edition by Leo Unger. Original publication date (1899)Google Scholar
  15. 15.
    Janicic, P., Narboux, J., Quaresma, P.: The area method: a recapitulation. J. Autom. Reason. 48(4), 489–532 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Magaud, N., Narboux, J., Schreck, P.: A case study in formalizing projective geometry in Coq: Desargues theorem. Comput. Geom. 45(8), 406–424 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Narboux, J.: Mechanical theorem proving in Tarski’s geometry. In: Botana, F., Lozano, E.R. (eds.), Post-Proceedings of Automated Deduction in Geometry 2006, Volume 4869 of LNCS, pp. 139–156. Springer, Pontevedra, Spain (2007)Google Scholar
  18. 18.
    Oryszczyszyn, H., Prazmowski, K.: Classical configurations in affine planes. J. Formaliz. Math. 2 (1990)Google Scholar
  19. 19.
    Pasch, M.: Vorlesungen über Neuere Geometrie. Springer, New York (1976)CrossRefzbMATHGoogle Scholar
  20. 20.
    Sozeau, M., Oury, N.: First-class type classes. In: Mohamed, O.A., Muñoz, C.A., Tahar, S. (eds.) TPHOLs, Volume 5170 of Lecture Notes in Computer Science, pp. 278–293. Springer, New York (2008)Google Scholar
  21. 21.
    Schwabhäuser, W., Szmielew, W., Tarski, A.: Metamathematische Methoden in der Geometrie. Springer, Berlin (1983)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.ICube, UMR 7357University of Strasbourg - CNRSStrasbourgFrance

Personalised recommendations