Journal of Automated Reasoning

, Volume 57, Issue 1, pp 67–95 | Cite as

Proof Tree Preserving Tree Interpolation

Article

Abstract

Craig interpolation has a wide range of applications in model checking, verification, and state space abstraction. Recent advances use a more general version of interpolation called tree interpolation. In this paper, we present a method to extract tree interpolants from a proof tree generated by an SMT solver without modifying the proof tree. The framework is general with respect to the theories involved. We instantiate the framework to the combination of the theories of uninterpreted functions and linear arithmetic.

Keywords

Tree interpolation Proof tree preservation SMT 

References

  1. 1.
    Albarghouthi, A., McMillan, K.L.: Beautiful interpolants. In: CAV, pp. 313–329. Springer, Berlin (2013)Google Scholar
  2. 2.
    Blanc, R., Gupta, A., Kovács, L., Kragl, B.: Tree interpolation in vampire. In: LPAR, pp. 173–181. Springer, Berlin (2013)Google Scholar
  3. 3.
    Brillout, A., Kroening, D., Rümmer, P., Wahl, T.: An interpolating sequent calculus for quantifier-free Presburger arithmetic. In: IJCAR, pp. 384–399 (2010)Google Scholar
  4. 4.
    Bruttomesso, R., Ghilardi, S., Ranise, S.: From strong amalgamability to modularity of quantifier-free interpolation. In: IJCAR’12, pp. 118–133 (2012)Google Scholar
  5. 5.
    Bruttomesso, R., Rollini, S., Sharygina, N., Tsitovich, A.: Flexible interpolation with local proof transformations. In: ICCAD, pp. 770–777 (2010)Google Scholar
  6. 6.
    Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: an interpolating SMT solver. In: SPIN’12, pp. 248–254. Springer, Berlin (2012)Google Scholar
  7. 7.
    Christ, J., Hoenicke, J., Nutz, A.: Proof tree preserving interpolation. In: TACAS’13, pp. 124–138. Springer, Berlin (2013)Google Scholar
  8. 8.
    Christ, J., Hoenicke, J., Nutz, A.: Proof tree preserving interpolation. Reports of SFB/TR 14 AVACS 89, SFB/TR 14 AVACS, February 2013. ISSN: 1860–9821. http://www.avacs.org
  9. 9.
    Cimatti, A., Griggio, A., Sebastiani, R.: Efficient interpolant generation in satisfiability modulo theories. In: TACAS’08, pp. 397–412. Springer, Berlin (2008)Google Scholar
  10. 10.
    Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory. J. Symb. Log. 22(3), 269–285 (1957)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Dillig, I., Dillig, T., Aiken, A.: Cuts from proofs: a complete and practical technique for solving linear inequalities over integers. In: CAV’09, pp. 233–247 (2009)Google Scholar
  12. 12.
    Dräger, K., Kupriyanov, A., Finkbeiner, B., Wehrheim, H.: SLAB: a certifying model checker for infinite-state concurrent systems. In: TACAS’10, pp. 271–274. Springer, Brlin (2010)Google Scholar
  13. 13.
    D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant strength. In: VMCAI’10, pp. 129–145 (2010)Google Scholar
  14. 14.
    Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: CAV’06, pp. 81–94. Springer, Berlin (2006)Google Scholar
  15. 15.
    Farzan, A., Kincaid, Z., Podelski, A.: Inductive data flow graphs. In: POPL’13, pp. 129–142. ACM, New york (2013)Google Scholar
  16. 16.
    Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): sast decision procedures. In: CAV’04, pp. 175–188 (2004)Google Scholar
  17. 17.
    Gupta, A., Popeea, C., Rybalchenko, A.: Solving recursion-free horn clauses over LI+UIF. In: APLAS’11, pp. 188–203. Springer, Berlin (2011)Google Scholar
  18. 18.
    Heizmann, M., Hoenicke, J., Podelski, A.: Nested interpolants. In POPL’10, pp. 471–482. ACM, New York (2010)Google Scholar
  19. 19.
    Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In: POPL’04, pp. 232–244. Springer, Berlin (2004)Google Scholar
  20. 20.
    King, T., Barrett, C., Dutertre, B.: Simplex with sum of infeasibilities for SMT. In: FMCAD’13, pp. 189–196 (2013)Google Scholar
  21. 21.
    McMillan, K.L.: Interpolation and SAT-based model checking. In: CAV’03, pp. 1–13. Springer, Berlin (2003)Google Scholar
  22. 22.
    McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1), 101–121 (2005)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    McMillan, K.L.: Lazy abstraction with interpolants. In: CAV’06, pp. 123–136. Springer, Berlin (2006)Google Scholar
  24. 24.
    McMillan, K.L.: Interpolants from Z3 proofs. In: FMCAD, pp. 19–27. Springer, Berlin (2011)Google Scholar
  25. 25.
    Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans. Program. Lang. Syst. 1(2), 245–257 (1979)CrossRefMATHGoogle Scholar
  26. 26.
    Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone computations. J. Symb. Log. 62(3), 981–998 (1997)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Rümmer, P., Hojjat, H., Kuncak, V.: Classifying and solving horn clauses for verification. In VSTTE, pp. 1–21. Springer, Berlin (2013)Google Scholar
  28. 28.
    Sery, O., Fedyukovich, G., Sharygina, N.: Incremental upgrade checking by means of interpolation-based function summaries. In: FMCAD’12, pp. 114–121. IEEE, New York (2012)Google Scholar
  29. 29.
    Totla, N., Wies, T.: Complete instantiation-based interpolation. In: POPL, pp. 537–548. ACM, New York (2013)Google Scholar
  30. 30.
    Yorsh, G., Musuvathi, M.: A combination method for generating interpolants. In: CADE, pp. 353–368 (2005)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.University of FreiburgFreiburgGermany

Personalised recommendations