Journal of Automated Reasoning

, Volume 56, Issue 3, pp 309–341 | Cite as

Mechanizing a Process Algebra for Network Protocols

  • Timothy Bourke
  • Robert J. van Glabbeek
  • Peter Höfner


This paper presents the mechanization of a process algebra for Mobile Ad hoc Networks and Wireless Mesh Networks, and the development of a compositional framework for proving invariant properties. Mechanizing the core process algebra in Isabelle/HOL is relatively standard, but its layered structure necessitates special treatment. The control states of reactive processes, such as nodes in a network, are modelled by terms of the process algebra. We propose a technique based on these terms to streamline proofs of inductive invariance. This is not sufficient, however, to state and prove invariants that relate states across multiple processes (entire networks). To this end, we propose a novel compositional technique for lifting global invariants stated at the level of individual nodes to networks of nodes.


Interactive theorem proving Isabelle/HOL Process algebra Compositional invariant proofs Wireless Mesh Networks Mobile Ad hoc Networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bengtson, J., Parrow, J.: Psi-calculi in Isabelle. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) Theorem Proving in Higher Order Logics (TPHOLs 2009). LNCS, vol. 5674, pp. 99–114. Springer, Berlin (2009)Google Scholar
  2. 2.
    Bishop, S., Fairbairn, M., Norrish, M., Sewell, P., Smith, M., Wansbrough, K.: Engineering with logic: HOL specification and symbolic-evaluation testing for TCP implementations. In: Principles of Programming Languages (POPL’06), pp. 55–66. ACM (2006)Google Scholar
  3. 3.
    Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT solvers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) Conference on Automated Deduction (CADE-23). LNCS, vol. 6803, pp. 116–130. Springer, Berlin (2011)Google Scholar
  4. 4.
    Bourke, T.: Mechanization of the Algebra for Wireless Networks (AWN). Archive of Formal Proofs (2014).
  5. 5.
    Bourke, T., van Glabbeek, R.J., Höfner, P.: A mechanized proof of loop freedom of the (untimed) AODV routing protocol. In: Cassez, F., Raskin, J.F. (eds.) Automated Technology for Verification and Analysis (ATVA’14). LNCS, vol. 8837, pp. 47–63. Springer, Berlin (2014)Google Scholar
  6. 6.
    Bourke, T., van Glabbeek, R.J., Höfner, P.: Showing invariance compositionally for a process algebra for network protocols. In: Klein, G., Gamboa, R. (eds.) Interactive Theorem Proving (ITP’14). LNCS, vol. 8558, pp. 144–159. Springer, Berlin (2014)Google Scholar
  7. 7.
    Bourke, T., Höfner, P.: Loop Freedom of the (Untimed) Aodv Routing Protocol. Archive of Formal Proofs (2014).
  8. 8.
    Chandy K.M., Misra J.: Parallel Program Design: A Foundation. Addison Wesley, Boston (1988)zbMATHGoogle Scholar
  9. 9.
    Chaudhuri, K., Doligez, D., Lamport, L., Merz, S.: Verifying safety properties with the TLA+ proof system. In: Giesl, J., Hähnle, R. (eds.) International Joint Conference on Automated Reasoning (IJCAR’10). LNCS, vol. 6173, pp. 142–148. Springer, Berlin (2010)Google Scholar
  10. 10.
    Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A.K., Portmann, M., Tan, W.L.: A process algebra for wireless mesh networks. In: Seidl, H. (ed.) European Symposium on Programming (ESOP ’12). LNCS, vol. 7211, pp. 295–315. Springer, Berlin (2012)Google Scholar
  11. 11.
    Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A.K., Portmann, M., Tan, W.L.: A process algebra for wireless mesh networks used for modelling, verifying and analysing AODV. Technical Report 5513, NICTA (2013).
  12. 12.
    Feliachi, A., Gaudel, M.C., Wolff, B.: Isabelle/Circus: A process specification and verification environment. In: Joshi, R., Müller, P., Podelski, A. (eds.) Verified Software: Theories, Tools, and Experiments (VSTTE’12) LNCS, vol. 7152, pp. 243–260. Springer, Berlin (2012)Google Scholar
  13. 13.
    Floyd R.W.: Assigning meanings to programs. Proc. Symp. Appl. Math. 19, 19–32 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Fokkink W., Groote J.F., Reniers M.: Process algebra needs proof methodology. EATCS Bull. 82, 109–125 (2004)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Ghassemi, F., Fokkink, W., Movaghar, A.: Restricted broadcast process theory. In: Cerone, A., Gruner, S. (eds.) Software Engineering and Formal Methods (SEFM ’08), pp. 345–354. IEEE Computer Society (2008)Google Scholar
  16. 16.
    Godskesen, J.C.: A calculus for mobile ad hoc networks. In: Murphy, A.L., Vitek, J. (eds.) Coordination Models and Languages (COORDINATION ’07) LNCS, vol. 4467, pp. 132–150. Springer, Berlin (2007)Google Scholar
  17. 17.
    Göthel T., Glesner S.: An approach for machine-assisted verification of timed CSP specifications. Innov. Syst. Softw. Eng. 6(3), 181–193 (2010)CrossRefGoogle Scholar
  18. 18.
    Heyd, B., Crégut, P.: A modular coding of UNITY in COQ. In: Goos, G., Hartmanis, J., Leeuwen, J., Wright, J., Grundy, J., Harrison, J. (eds.) Theorem Proving in Higher Order Logics (TPHOLs 1996) LNCS, vol. 1125, pp. 251–266. Springer, Berlin (1996)Google Scholar
  19. 19.
    Hirschkoff, D.: A full formalisation of π-calculus theory in the calculus of constructions. In: Schneider, K., Brandt, J. (eds.) Theorem Proving in Higher Order Logics (TPHOLs 2007). LNCS, vol. 4732, pp. 153–169. Springer, Berlin (2007)Google Scholar
  20. 20.
    Kammüller, F., Wenzel, M., Paulson, L.C.: Locales: A sectioning concept for Isabelle. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) Theorem Proving in Higher Order Logics (TPHOLs 1999). LNCS, vol. 1690, pp. 149–165. Springer, Berlin (1999)Google Scholar
  21. 21.
    Lamport L.: Specifying Systems: The TLA + Language and Tools for Hardware and Software Engineers. Addison Wesley, Boston (2002)Google Scholar
  22. 22.
    Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Q. 2(3), 219–246 (1989).
  23. 23.
    Manna Z., Pnueli A.: Temporal Verification of Reactive Systems: Safety. Springer, Berlin (1995)CrossRefzbMATHGoogle Scholar
  24. 24.
    Merro M.: An observational theory for mobile ad hoc networks (full version). Inf. Comput. 207(2), 194–208 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Mezzetti N., Sangiorgi D.: Towards a calculus for wireless systems. Electron. Notes Theor. Comput. Sci. (ENTCS) 158, 331–353 (2006)CrossRefzbMATHGoogle Scholar
  26. 26.
    Milner, R.: Operational and algebraic semantics of concurrent processes. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, chap. 19, pp. 1201–1242. Elsevier Science Publishers B.V. (North-Holland) (1990). Alternatively see Communication and Concurrency, Prentice-Hall, Englewood Cliffs, 1989, of which an earlier version appeared as A Calculus of Communicating Systems. LNCS 92, Springer, 1980Google Scholar
  27. 27.
    Müller, O.: A Verification Environment for I/O Automata Based on Formalized Meta-theory. Ph.D. Thesis, TU München (1998)Google Scholar
  28. 28.
    Nanz S., Hankin C.: A framework for security analysis of mobile wireless networks. Theor. Comput. Sci. 367, 203–227 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Berlin (2002)Google Scholar
  30. 30.
    Paulson L.C.: The inductive approach to verifying cryptographic protocols. J. Comput. Secur. 6(1–2), 85–128 (1998)Google Scholar
  31. 31.
    Perkins, C.E., Belding-Royer, E.M., Das, S.R.: Ad hoc On-Demand Distance Vector (AODV) Routing. RFC 3561 (Experimental), Network Working Group (2003)Google Scholar
  32. 32.
    Plotkin, G.: A structural approach to operational semantics. J. Log. Algebr. Program. 60–61, 17–139 (2004). Originally appeared in 1981Google Scholar
  33. 33.
    de Roever, W.P., de Boer, F., Hannemann, U., Hooman, J., Lakhnech, Y., Poel, M., Zwiers, J.: Concurrency Verification: Introduction to Compositional and Noncompositional Methods. Cambridge Tracts in Theoretical Computer Science 54. CUP (2001)Google Scholar
  34. 34.
    Singh A., Ramakrishnan C.R., Smolka S.A.: A process calculus for mobile ad hoc networks. Sci. Comput. Program. 75, 440–469 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Sutcliffe G.: The TPTP problem library and associated infrastructure: the FOF and CNF parts, v3.5.0. J. Autom. Reason. 43(4), 337–362 (2009)CrossRefzbMATHGoogle Scholar
  36. 36.
    Tej, H., Wolff, B.: A corrected failure divergence model for CSP in Isabelle/HOL. In: Fitzgerald, J.S., Jones, C.B., Lucas, P. (eds.) Industrial Applications and Strengthened Foundations of Formal Methods (FME’97). LNCS, vol. 1313, pp. 318–337. Springer, Berlin (1997)Google Scholar
  37. 37.
    Wenzel, M.: Isabelle/jEdit—a prover IDE within the PIDE framework. In: Jeuring, J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) Intelligent Computer Mathematics. LNCS, vol. 7362, pp. 468–471. Springer, Berlin (2012)Google Scholar
  38. 38.
    Wenzel, M.: Shared-memory multiprocessing for interactive theorem proving. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) Interactive Theorem Proving (ITP’13). LNCS, vol. 7998, pp. 418–434. Springer, Berlin (2013)Google Scholar
  39. 39.
    Zhou, M., Yang, H., Zhang, X., Wang, J.: The proof of AODV loop freedom. In: International Conference on Wireless Communications and Signal Processing (WCSP’09). IEEE (2009)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Inria Paris and École normale supérieureParisFrance
  2. 2.NICTA and UNSWSydneyAustralia

Personalised recommendations