Journal of Automated Reasoning

, Volume 56, Issue 2, pp 113–141 | Cite as

Semantically-Guided Goal-Sensitive Reasoning: Model Representation

Article

Abstract

SGGS (Semantically-Guided Goal-Sensitive reasoning) is a clausal theorem-proving method, which generalizes to first-order logic the Davis-Putnam-Loveland-Logemann procedure with conflict-driven clause learning (DPLL-CDCL). SGGS starts from an initial interpretation, and works towards modifying it into a model of a given set of clauses, reporting unsatisfiability if there is no model. The state of the search for a model is described by a structure, called SGGS clause sequence. We present SGGS clause sequences as a formalism to represent models; and we prove their properties related to the mechanisms of SGGS for clausal propagation, conflict solving, and conflict-driven model repair at the first-order level.

Keywords

Theorem proving Model building Semantic guidance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. J. Log. Comput. 4(3), 217–247 (1994)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Biere, A., Heule, M., Van Maaren, H., Walsh, T. (eds.) : Handbook of Satisfiability, chapter 26, pp. 825–886. IOS Press (2009)Google Scholar
  3. 3.
    Baumgartner, P.: Hyper tableaux - the next generation. In: de Swart, H. (ed.) : Proceedings of the 7th International Conference on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX), volume 1397 of Lecture Notes in Artificial Intelligence, pp. 60–76. Springer (1998)Google Scholar
  4. 4.
    Baumgartner, P.: FDPLL - A first-order Davis-Putnam-Logeman-Loveland procedure. In: McAllester, D. (ed.) : Proceedings of the 17th International Conference on Automated Deduction (CADE), volume 1831 of Lecture Notes in Artificial Intelligence, pp. 200–219. Springer (2000)Google Scholar
  5. 5.
    Baumgartner, P., Fuchs, A., Tinelli, C.: Implementing the model evolution calculus. International Journal on Artificial Intelligence Tools 15(1), 21–52 (2006)CrossRefGoogle Scholar
  6. 6.
    Baumgartner, P., Fuchs, A., Tinelli, C.: Lemma learning in the model evolution calculus. In: Hermann, M., Voronkov, A. (eds.) : Proceedings of the 13th Conference on Logic, Programming and Automated Reasoning (LPAR), volume 4246 of Lecture Notes in Artificial Intelligence, pp. 572–586. Springer (2006)Google Scholar
  7. 7.
    Baumgartner, P., Furbach, U.: Consolution as a framework for comparing calculi. J. Symb. Comput. 16(5), 445–477 (1993)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Baumgartner, P., Furbach, U.: Variants of clausal tableaux. In: Bibel, W., Schmitt, P.H. (eds.) : Automated Deduction - A Basis for Applications, volume I: Foundations - Calculi and Methods, chapter 3, pp. 73–102. Kluwer Academic Publishers (1998)Google Scholar
  9. 9.
    Baumgartner, P., Pelzer, B., Tinelli, C.: Model evolution calculus with equality - revised and implemented. J. Symb. Comput. 47(9), 1011–1045 (2012)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Baumgartner, P., Tinelli, C.: The model evolution calculus as a first-order DPLL method. Artif. Intell. 172(4/5), 591–632 (2008)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Baumgartner, P., Waldmann, U.: Superposition and model evolution combined. In: Schmidt, R. (ed.): Proceedings of the 22nd International Conference on Automated Deduction (CADE), volume 5663 of Lecture Notes in Artificial Intelligence, pp. 17–34. Springer (2009)Google Scholar
  12. 12.
    Bender, M., Pelzer, B., Schon, C.: E-KRHyper 1.4: Extensions for unique names and description logic. In: Bonacina, M.P. (ed.) : Proceedings of the 24th International Conference on Automated Deduction (CADE), volume 7898 of Lecture Notes in Artificial Intelligence, pp. 126–134. Springer (2013)Google Scholar
  13. 13.
    Billon, J.-P.: The disconnection method. In: Miglioli, P., Moscato, U., Mundici, D., Ornaghi, M. (eds.) : Proceedings of the 5th International Conference on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX), volume 1071 of Lecture Notes in Artificial Intelligence, pp. 110–126. Springer (1996)Google Scholar
  14. 14.
    Bonacina, M.P.: A taxonomy of theorem-proving strategies. In: Wooldridge, M.J., Veloso, M. (eds.) : Artificial Intelligence Today - Recent Trends and Developments, volume 1600 of Lecture Notes in Artificial Intelligence, pp. 43–84. Springer (1999)Google Scholar
  15. 15.
    Bonacina, M.P.: Towards a unified model of search in theorem proving: subgoal-reduction strategies. J. Symb. Comput. 39(2), 209–255 (2005)CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Bonacina, M.P.: On theorem proving for program checking – Historical perspective and recent developments. In: Fernàndez, M. (ed.) : Proceedings of the 12th International Symposium on Principles and Practice of Declarative Programming (PPDP), pp. 1–11. ACM Press (2010)Google Scholar
  17. 17.
    Bonacina, M.P., Lynch, C.A., de Moura, L.: On deciding satisfiability by DPLL(\({\Gamma }+\mathcal {T}\)) and unsound theorem proving. In: Schmidt, R. (ed.) : Proceedings of the 22nd International Conference on Automated Deduction (CADE), volume 5663 of Lecture Notes in Artificial Intelligence, pp. 35–50. Springer (2009)Google Scholar
  18. 18.
    Bonacina, M.P., Lynch, C.A., de Moura, L.: On deciding satisfiability by theorem proving with speculative inferences. J. Autom. Reason. 47(2), 161–189 (2011)CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    Bonacina, M.P., Plaisted, D.A.: Constraint manipulation in SGGS. In: Kutsia, T., Ringeissen, C. (eds.) : Proceedings of the 28th Workshop on Unification (UNIF), Technical Reports of the Research Institute for Symbolic Computation, pp. 47–54. Johannes Kepler Universität (2014). Available at http://vsl2014.at/meetings/UNIF-index.html
  20. 20.
    Bonacina, M.P., Plaisted, D.A.: SGGS theorem proving: an exposition. In: Konev, B., De Moura, L., Schulz, S. (eds.) : Proceedings of the 4th Workshop on Practical Aspects in Automated Reasoning (PAAR), EasyChair Proceedings in Computing (EPiC), pp. 1–14 (2014)Google Scholar
  21. 21.
    Bonacina, M.P., Plaisted, D.A.: Semantically guided goal-sensitive reasoning: inference system and completeness. In preparation (2015)Google Scholar
  22. 22.
    Bradley, A.R., Manna, Z.: The Calculus of Computation - Decision Procedures with Applications to Verification. Springer (2007)Google Scholar
  23. 23.
    Ricardo C., Leitsch, A., Peltier, N.: Automated Model Building. Kluwer Academic Publishers (2004)Google Scholar
  24. 24.
    Chang, C.-L., Lee, R.C.-T.: Symbolic Logic and Mechanical Theorem Proving. Academic Press (1973)Google Scholar
  25. 25.
    Chu, H., Plaisted, D.A.: Model finding in semantically guided instance-based theorem proving. Fundamenta Informaticae 21(3), 221–235 (1994)MathSciNetMATHGoogle Scholar
  26. 26.
    Chu, H., Plaisted, D.A.: CLINS-S: a semantically guided first-order theorem prover. J. Autom. Reason. 18(2) (1997)Google Scholar
  27. 27.
    Cotton, S. Natural domain SMT: A preliminary assessment. In: Chatterjee, K., Henzinger, T.A. (eds.) : Proceedings of the 8th International Conference on Formal Modeling of Timed Systems (FORMATS), volume 6246 of Lecture Notes in Computer Science, pp. 77–91. Springer (2010)Google Scholar
  28. 28.
    Davis, M.: The Universal Computer. The Road from Leibniz to Turing. Mathematics/Logic/Computing Series. CRC Press, Taylor and Francis Group (2012). Turing Centenary EditionGoogle Scholar
  29. 29.
    Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)CrossRefMathSciNetMATHGoogle Scholar
  30. 30.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7, 201–215 (1960)CrossRefMathSciNetMATHGoogle Scholar
  31. 31.
    de Moura, L., Bjørner, N.: Deciding effectively propositional logic using DPLL and substitution sets. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) : Proceedings of the 4th International Conference on Automated Reasoning (IJCAR), volume 5195 of Lecture Notes in Artificial Intelligence, pp. 410–425. Springer (2008)Google Scholar
  32. 32.
    de Moura, L., Bjørner, N.: Engineering DPLL(T) + saturation. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) : Proceedings of the 4th International Conference on Automated Reasoning (IJCAR), volume 5195 of Lecture Notes in Artificial Intelligence, pp. 475–490. Springer (2008)Google Scholar
  33. 33.
    de Moura, L., Bjørner, N.: Bugs, moles and skeletons: Symbolic reasoning for software development. In: Giesl, J., Hähnle, R. (eds.): Proceedings of the 5th International Conference on Automated Reasoning (IJCAR), volume 6173 of Lecture Notes in Artificial Intelligence, pp. 400–411. Springer (2010)Google Scholar
  34. 34.
    de Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and applications. Commun. ACM 54(9), 69–77 (2011)CrossRefGoogle Scholar
  35. 35.
    de Moura, L., Jovanovic, D.; A model-constructing satisfiability calculus. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) : Proceedings of the 14th International Conference on Verification with Model Checking and Abstract Interpretation (VMCAI), volume 7737 of Lecture Notes in Computer Science, pp. 1–12. Springer (2013)Google Scholar
  36. 36.
    Detlefs, D.L., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. J. ACM 52(3), 365–473 (2005)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Eén, N., Sörensson, N.: An extensible SAT solver [extended version 1.2]. In: Giunchiglia, E., Tacchella, A. (eds.) : Proceedings of the 6th International Conference on Theory and Applications of Satisfiability Testing (SAT), volume 2919 of Lecture Notes in Computer Science, pp. 502–518. Springer (2004)Google Scholar
  38. 38.
    Emmer, M., Khasidashvili, Z., Korovin, K., Sticksel, C., Voronkov, A.: EPR-based bounded model checking at word level. In: Gramlich, B., Miller, D., Sattler, U. (eds.) : Proceedings of the 6th International Conference on Automated Reasoning (IJCAR), volume 7364 of Lecture Notes in Artificial Intelligence, pp. 210–224. Springer (2012)Google Scholar
  39. 39.
    Fermüller, C., Leitsch, A., Hustadt, U., Tammet, T.: Resolution decision procedures. In: Robinson, A., Voronkov, A. (eds.) : Handbook of Automated Reasoning, vol. 2, chapter 25, pp. 1793–1849. Elsevier (2001)Google Scholar
  40. 40.
    Fietzke, A.: Labelled superposition. PhD thesis, Max Planck Institut für Informatik, Saabrücken (2013)Google Scholar
  41. 41.
    Fietzke, A., Weidenbach, C. Labelled splitting. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) : Proceedings of the 4th International Conference on Automated Reasoning (IJCAR), volume 5195 of Lecture Notes in Artificial Intelligence, pp. 459–474. Springer (2008)Google Scholar
  42. 42.
    Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem proving. In: Proceedings of the 18th IEEE Symposium on Logic in Computer Science (LICS), pp. 55–64. IEEE Computer Society Press (2003)Google Scholar
  43. 43.
    Ganzinger, H., Korovin, K.: Theory instantiation. In: Hermann, M., Voronkov, A. (eds.) : Proceedings of the 13th Conference on Logic, Programming and Automated Reasoning (LPAR), volume 4246 of Lecture Notes in Artificial Intelligence, pp. 497–511. Springer (2006)Google Scholar
  44. 44.
    Haller, L., Griggio, A., Brain, M., Kroening, D.: Deciding floating-point logic with systematic abstraction. In: Cabodi, G., Singh, S. (eds.) : Proceedings of the 12th Conference on Formal Methods for Computer-Aided Design (FMCAD). ACM and IEEE (2012)Google Scholar
  45. 45.
    Hoder, K., Voronkov, A.: The 481 ways to split a clause and deal with propositional variables. In: Bonacina, M.P. (ed.) : Proceedings of the 24th International Conference on Automated Deduction (CADE), volume 7898 of Lecture Notes in Artificial Intelligence, pp. 450–464. Springer (2013)Google Scholar
  46. 46.
    Hsiang, J., Rusinowitch, M.: Proving refutational completeness of theorem proving strategies: the transfinite semantic tree method. J. ACM 38(3), 559–587 (1991)CrossRefMathSciNetMATHGoogle Scholar
  47. 47.
    Jacobs, S., Waldmann, U.: Comparing instance generation methods for automated reasoning. J. Autom. Reason. 38, 57–78 (2007)CrossRefMathSciNetMATHGoogle Scholar
  48. 48.
    Jain, H.: Verification using satisfiability checking, predicate abstraction and Craig interpolation. PhD thesis, School of Computer Science, Carnegie Mellon University (2008)Google Scholar
  49. 49.
    Marques-Silva, J.P., Sakallah, K.A.: GRASP: A new search algorithm for satisfiability. In: Proceedings of the International Conference on Computer-Aided Design (ICCAD), pp 220–227 (1997)Google Scholar
  50. 50.
    Jovanović, D., Barrett, C., de Moura, L.: The design and implementation of the model-constructing satisfiability calculus. In: Jobstman, B., Ray, S. (eds.) Proceedings of the 13th Conference on Formal Methods in Computer Aided Design (FMCAD). FMCAD Inc. (2013)Google Scholar
  51. 51.
    Jovanovic, D., de Moura, L.: Cutting to the chase: Solving linear integer arithmetic. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) : Proceedings of the 23rd International Conference on Automated Deduction (CADE), volume 6803 of Lecture Notes in Artificial Intelligence, pp. 338–353. Springer (2011)Google Scholar
  52. 52.
    Jovanovic, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) : Proceedings of the 6th International Conference on Automated Reasoning (IJCAR), volume 7364 of Lecture Notes in Artificial Intelligence, pp. 339–354. Springer (2012)Google Scholar
  53. 53.
    Korovin, K.: An invitation to instantiation-based reasoning: from theory to practice. In: Schmidt, R. (ed.) : Proceedings of the 22nd International Conference on Automated Deduction (CADE), volume 5663 of Lecture Notes in Artificial Intelligence, pp. 163–166. Springer (2009)Google Scholar
  54. 54.
    Korovin, K.: Inst-Gen: a modular approach to instantiation-based automated reasoning. In: Voronkov, A., Weidenbach, C. (eds.) : Programming Logics: Essays in Memory of Harald Ganzinger, volume 7797 of Lecture Notes in Artificial Intelligence, pp. 239–270. Springer (2013)Google Scholar
  55. 55.
    Korovin, K., Sticksel, C.: iProver-Eq: An instantiation-based theorem prover with equality. In: Giesl, J., Hähnle, R. (eds.) : Proceedings of the 5th International Conference on Automated Reasoning (IJCAR), volume 6173 of Lecture Notes in Artificial Intelligence, pp. 196–202. Springer (2010)Google Scholar
  56. 56.
    Korovin, K., Tsiskaridze, N., Voronkov, A.: Conflict resolution. In: Gent, I.P. (ed.) : Proceedings of the 15th International Conference on Constraint Programming (CP), volume 5732 of Lecture Notes in Computer Science, pp. 509–523. Springer (2009)Google Scholar
  57. 57.
    Kovàcs, L., Voronkov, A.: First order theorem proving and Vampire. In: Sharygina, N., Veith, H. (eds.) : Proceedings of the 25th International Conference on Computer-Aided Verification (CAV), volume 8044 of Lecture Notes in Computer Science, pp. 1–35. Springer (2013)Google Scholar
  58. 58.
    Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of View. Springer (2008)Google Scholar
  59. 59.
    Lee, S.-J., Plaisted, D.A.: Theorem proving using hyper-matching strategy. In: Ras, Z. (ed.) : Methodologies for Intelligent Systems, pp. 467–476, North-Holland (1989). Presented at the International Symposium on Methodologies for Intelligent Systems, October 1989Google Scholar
  60. 60.
    Lee, S.-J., Plaisted, D.A.: Inference by clause matching. In: Ras, Z., Zemankova, M. (eds.) : Intelligent Systems, pp. 200–235. Ellis Horwood (1990)Google Scholar
  61. 61.
    Lee, S.-J., Plaisted, D.A.: Eliminating duplication with the hyperlinking strategy. J. Autom. Reason. 9, 25–42 (1992)CrossRefMathSciNetMATHGoogle Scholar
  62. 62.
    Leino, K., Rustan, M., Milicevic, A.: Program extrapolation with Jennisys. In: Proceedings of the 27th Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), pp. 411–430. ACM (2012)Google Scholar
  63. 63.
    Letz, R.: Clausal tableaux. In: Bibel, W., Schmitt, P.H. (eds.) : Automated Deduction - A Basis for Applications, volume I: Foundations - Calculi and Methods, chapter 2, pp. 43–72. Kluwer Academic Publishers (1998)Google Scholar
  64. 64.
    Letz, R., Stenz, G.: DCTP - a disconnection calculus theorem prover. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) : Proceedings of the 1st International Conference on Automated Reasoning (IJCAR), volume 2083 of Lecture Notes in Artificial Intelligence, pp. 381–385. Springer (2001)Google Scholar
  65. 65.
    Letz, R., Stenz, G.: Model elimination and connection tableau procedures. In: Robinson, A., Voronkov, A. (eds.) : Handbook of Automated Reasoning, chapter 28, pp. 2015–2114. Elsevier (2001)Google Scholar
  66. 66.
    Letz, R., Stenz, G.: Proof and model generation with disconnection tableaux. In: Nieuwenhuis, R., Voronkov, A. (eds.) : Proceedings of the 8th International Conference on Logic, Programming and Automated Reasoning (LPAR), volume 2250 of Lecture Notes in Artificial Intelligence, pp. 142–156. Springer (2001)Google Scholar
  67. 67.
    Letz, R., Stenz, G.: Integration of equality reasoning into the disconnection calculus. In: Egly, U., Fermüller, C.G. (eds.) : Proceedings of the 15th International Conference on Analytic Tableaux and Related Methods (TABLEAUX), volume 2381 of Lecture Notes in Artificial Intelligence, pp. 176–190. Springer (2002)Google Scholar
  68. 68.
    Loveland, D.W.: A simplified format for the model elimination procedure. J. ACM 16(3), 349–363 (1969)CrossRefMathSciNetMATHGoogle Scholar
  69. 69.
    Malik, S., Zhang, L.: Boolean satisfiability: from theoretical hardness to practical success. Commun. ACM 52(8), 76–82 (2009)CrossRefGoogle Scholar
  70. 70.
    McCune, W.W.: Semantic guidance with carefully chosen interpretations. In: Proceedings of the 6th Workshop on Strategies in Automated Deduction (STRATEGIES) (2006)Google Scholar
  71. 71.
    McMillan, K.L., Kuehlmann, A., Sagiv, M. In: Bouajjani, A., Maler, O. (eds.) Proceedings of the 21st Conference on Computer Aided Verification (CAV), volume 5643 of Lecture Notes in Computer Science, pp. 462–476. Springer (2009)Google Scholar
  72. 72.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Chaff, S.M.: In: Blaauw, D., Lavagno, L. (eds.) : Engineering an efficient SAT solver (2001)Google Scholar
  73. 73.
    Navarro, J.A., Voronkov, A.: Proof systems for effectively propositional logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) : Proceedings of the 4th International Conference on Automated Reasoning (IJCAR), volume 5195 of Lecture Notes in Artificial Intelligence, pp. 426–440. Springer (2008)Google Scholar
  74. 74.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J. ACM 53(6), 937–977 (2006)CrossRefMathSciNetGoogle Scholar
  75. 75.
    Peterson, G.E., Stickel, M.E.: Complete sets of reductions for some equational theories. J. ACM 28(2), 233–264 (1981)CrossRefMathSciNetMATHGoogle Scholar
  76. 76.
    Plaisted, D.A.: Mechanical theorem proving. In: Banerji, R.B. (ed.) : Formal Techniques in Artificial Intelligence, pp. 269–320. Elsevier (1990)Google Scholar
  77. 77.
    Plaisted, D.A., Miller, S.: The relative power of semantics and unification. In: Voronkov, A., Weidenbach, C. (eds.) : Programming Logics: Essays in Memory of Harald Ganzinger, volume 7797 of Lecture Notes in Artificial Intelligence, pp. 317–344. Springer (2013)Google Scholar
  78. 78.
    Plaisted, D.A., Zhu, Y.: The Efficiency of Theorem Proving Strategies. Friedr Vieweg & Sohns (1997)Google Scholar
  79. 79.
    Plaisted, D.A., Zhu, Y.: Ordered semantic hyper linking. J. Autom. Reason. 25, 167–217 (2000)CrossRefMathSciNetMATHGoogle Scholar
  80. 80.
    Riazanov, A.: Implementing an efficient theorem prover. PhD thesis, Department of Computer Science, The University of Manchester (2003)Google Scholar
  81. 81.
    Robinson, J.A.: Automatic deduction with hyper-resolution. Int. J. Comput. Math. 1, 227–234 (1965)MATHGoogle Scholar
  82. 82.
    Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) : Proceedings of the 19th International Conference on Logic, Programming and Automated Reasoning (LPAR), volume 8312 of Lecture Notes in Artificial Intelligence, pp 735–743. Springer (2013)Google Scholar
  83. 83.
    Shankar, N.: Little engines of proof, 2002. Invited talk, Federated Logic Conference, Copenhagen, Denmark; and course notes of Fall 2003, http://www.csl.sri.com/users/shankar/LEP.html
  84. 84.
    Slagle, J.R.: Automatic theorem proving with renamable and semantic resolution. J. ACM 14(4), 687–697 (1967)CrossRefMathSciNetMATHGoogle Scholar
  85. 85.
    Smullyan, R.M.: First-Order Logic. Dover Publications, New York (1995). First published by Springer in 1968Google Scholar
  86. 86.
    Stickel, M.E.: A unification algorithm for associative commutative functions. J. ACM 28, 423–434 (1981)CrossRefMathSciNetMATHGoogle Scholar
  87. 87.
    Stickel, M.E.: A Prolog technology theorem prover. New Generation Computing 2(4), 371–383 (1984)CrossRefGoogle Scholar
  88. 88.
    Stickel, M.E.: Automated deduction by theory resolution. J. Autom. Reason. 1, 333–355 (1985)CrossRefMathSciNetMATHGoogle Scholar
  89. 89.
    Stickel, M.E.: A Prolog technology theorem prover: implementation by an extended Prolog compiler. J. Autom. Reason. 4, 353–380 (1988)CrossRefMathSciNetMATHGoogle Scholar
  90. 90.
    Stickel, M.E.: A Prolog technology theorem prover: new exposition and implementation in Prolog. Theor. Comput. Sci. 104, 109–128 (1992)CrossRefMathSciNetMATHGoogle Scholar
  91. 91.
    Van Gelder, A., Tsuji, Y.K.: Satisfiability testing with more reasoning and less guessing. DIMACS Series in Discrete Mathematics and Theoretical Computer Science 26, 559–586 (1996)Google Scholar
  92. 92.
    Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A., Voronkov, A. (eds.) : Handbook of Automated Reasoning, vol. 2, pp. 1965–2012. Elsevier (2001)Google Scholar
  93. 93.
    Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS version 3.5. In: Schmidt, R. (ed.) : Proceedings of the 22nd International Conference on Automated Deduction (CADE), volume 5663 of Lecture Notes in Artificial Intelligence, pp. 140–145. Springer (2009)Google Scholar
  94. 94.
    Wos, L., Carson, D., Robinson, G.: Efficiency and completeness of the set of support strategy in theorem proving. J. ACM 12, 536–541 (1965)CrossRefMathSciNetMATHGoogle Scholar
  95. 95.
    Zhang, H., Stickel, M.E.: Implementing the Davis-Putnam method. J. Autom. Reason. 24(1/2), 277–296 (2000)CrossRefMathSciNetMATHGoogle Scholar
  96. 96.
    Zhang, L., Malik, S.: The quest for efficient boolean satisfiability solvers. In: Voronkov, A. (ed.) : Proceedings of the 18th International Conference on Automated Deduction (CADE), volume 2392 of Lecture Notes in Artificial Intelligence, pp. 295–313. Springer (2002)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Dipartimento di InformaticaUniversità degli Studi di VeronaVeronaItaly
  2. 2.Department of Computer ScienceUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations