Mechanizing Complemented Lattices Within Mizar Type System

Abstract

Recently some longstanding open lattice theory problems were solved with the help of automated theorem provers. The question which may be posed is how to cope with such results to improve their presentation for human without loss of machine-readability, not only at the proof level, which should be rather straightforward, but also at the stage of rebuilding appropriate data structure. We describe the framework extending already existed in the Mizar library for Boolean algebras to cover more general cases of lattice with complements. The efficiency of this approach was tested e.g. on short axiom systems for Boolean algebras based on negation and disjunction. We also proved Nachbin theorem for spectra of distributive lattices.

References

  1. 1.

    Alama, J., Kohlhase, M., Mamane, L., Naumowicz, A., Rudnicki, P., Urban, J.: Licensing the Mizar Mathematical Library. In: Davenport, J.H., Farmer, W.M., et al. (eds.) Proc. of MKM 2011, LNCS, vol. 6824, pp. 149–163. Springer, Berlin, Heidelberg (2011)

  2. 2.

    Balbes, R., Dwinger, P.: Distributive Lattices. University of Missouri Press (1975)

  3. 3.

    Bancerek, G.: Development of the theory of continuous lattices in Mizar. In: Kerber, M., Kohlhase, M. (eds.) Symbolic Computation and Automatic Reasoning. The Calculemus-2000 Symposium, A K Peters, pp. 65–80 (2000)

  4. 4.

    Dahn, B.I.: Robbins algebras are Boolean: A revision of McCune’s computer-generated solution of Robbins problem. J. Algebra 208, 526–532 (1998)

    MATH  MathSciNet  Article  Google Scholar 

  5. 5.

    Fitelson, B.: Using Mathematica 3.0 to understand the computer proof of the Robbins conjecture. Math. Ed. Res. 7(1) (1998)

  6. 6.

    Geuvers, H., Pollack, R., Wiedijk, F., Zwanenburg, J.: A constructive algebraic hierarchy in Coq. J. Symb. Comput. 34(4), 271–286 (2002)

    MATH  MathSciNet  Article  Google Scholar 

  7. 7.

    Grabowski, A.: Automated discovery of properties of rough sets. Fundamenta Informaticae 128(1–2), 65–79 (2013)

    MATH  MathSciNet  Google Scholar 

  8. 8.

    Grabowski, A.: Prime filters and ideals in distributive lattices, MML Id: LATTICEA. Formalized Mathematics 21(3), 213–221 (2013)

    MATH  Article  Google Scholar 

  9. 9.

    Grabowski, A.: Robbins algebras vs. Boolean algebras, MML Id: ROBBINS1. Formalized Mathematics 9(4), 681–690 (2001)

    MathSciNet  Google Scholar 

  10. 10.

    Grabowski, A., Kornilowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formalized Reason. 3(2), 153–245 (2010)

    MATH  MathSciNet  Google Scholar 

  11. 11.

    Grabowski, A., Schwarzweller, Ch.: Revisions as an essential tool to maintain mathematical repositories. In: Proc. of the 14th symposium on Towards Mechanized Mathematical Assistants, MKM 2007, Hagenberg, Austria, LNCS, vol. 4573, pp. 235–249, Springer (2007)

  12. 12.

    Grabowski, A., Schwarzweller, Ch.: Towards automatically categorizing mathematical knowledge. In: Federated Conference on Computer Science and Information Systems – FedCSIS 2012, Wroclaw, Poland, 9–12 September 2012, Proceedings, pp. 63–68 (2012)

  13. 13.

    Grätzer, G.: Lattice Theory: Foundation. Birkhäuser (2011)

  14. 14.

    Huntington, E.V.: Boolean algebra: a correction. Trans. AMS 35(2), 557–558 (1933)

    MathSciNet  Google Scholar 

  15. 15.

    Huntington, E.V.: New sets of independent postulates for the algebra of logic, with special reference to Whitehead and Russell’s Principia Mathematica. Trans. AMS 35, 274–304 (1933)

    MathSciNet  Google Scholar 

  16. 16.

    Kornilowicz, A.: On rewriting rules in Mizar. J. Autom. Reason. 50(2), 203–210 (2013)

    MATH  MathSciNet  Article  Google Scholar 

  17. 17.

    McCune, W.: Solution of the Robbins problem. J. Autom. Reason. 19, 263–276 (1997)

    MATH  MathSciNet  Article  Google Scholar 

  18. 18.

    McCune, W., Veroff, R., Fitelson, B., Harris, K., Feist, A., Wos, L.: Short single axioms for Boolean algebra. J. Autom. Reason. 29(1), 1–16 (2002)

    MATH  MathSciNet  Article  Google Scholar 

  19. 19.

    Naumowicz, A.: Interfacing external CA systems for Grobner bases computation in Mizar proof checking. Int. J. Comput. Math. 87(1), 1–11 (2010)

    MATH  Article  Google Scholar 

  20. 20.

    Naumowicz, A., Bylinski, C.: Improving Mizar texts with properties and requirements. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) Proc. of Third International Conference on Mathematical Knowledge Management, LNCS, vol. 3119, pp. 290–301. Springer (2004)

  21. 21.

    Naumowicz, A., Kornilowicz, A.: A brief overview of Mizar. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) Proceedings of TPHOLs’09, LNCS, vol. 5674, pp. 67–72. Springer, Berlin, Heidelberg (2009)

  22. 22.

    Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: a proof assistant for higher order logic. Springer, Berlin (2002)

    Book  Google Scholar 

  23. 23.

    Pak, K.: Improving legibility of natural deduction proofs is not trivial. Logical Methods Comput. Sci. 10(3), 1–30 (2014)

    Article  Google Scholar 

  24. 24.

    Pak, K.: Methods of lemma extraction in natural deduction proofs. J. Autom. Reason. 50(2), 217–228 (2013)

    MATH  Article  Google Scholar 

  25. 25.

    Trybulec, A., Kornilowicz, A., Naumowicz, A., Kuperberg, K.: Formal mathematics for mathematicians. J. Autom. Reason. 50(2), 119–121 (2013)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Urban, J., Rudnicki, P., Sutcliffe, G.: ATP and presentation service for Mizar formalizations. J. Autom. Reason. 50(2), 229–241 (2013)

    MATH  MathSciNet  Article  Google Scholar 

  27. 27.

    zukowski, S.: Introduction to lattice theory, MML Id: LATTICES. Formalized Mathematics 1(1), 215–222 (1990)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adam Grabowski.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grabowski, A. Mechanizing Complemented Lattices Within Mizar Type System. J Autom Reasoning 55, 211–221 (2015). https://doi.org/10.1007/s10817-015-9333-5

Download citation

Keywords

  • Formalization of mathematics
  • Mizar
  • Complemented lattices