Journal of Automated Reasoning

, Volume 55, Issue 1, pp 1–37 | Cite as

A Mechanised Proof of Gödel’s Incompleteness Theorems Using Nominal Isabelle

  • Lawrence C. Paulson


An Isabelle/HOL formalisation of Gödel’s two incompleteness theorems is presented. The work follows Świerczkowski’s detailed proof of the theorems using hereditarily finite (HF) set theory (Dissertationes Mathematicae 422, 1–58, 2003). Avoiding the usual arithmetical encodings of syntax eliminates the necessity to formalise elementary number theory within an embedded logical calculus. The Isabelle formalisation uses two separate treatments of variable binding: the nominal package (Logical Methods in Computer Science 8(2:14), 1–35, 2012) is shown to scale to a development of this complexity, while de Bruijn indices (Indagationes Mathematicae 34, 381–392, 1972) turn out to be ideal for coding syntax. Critical details of the Isabelle proof are described, in particular gaps and errors found in the literature.


Gödel’s incompleteness theorems Isabelle/HOL Nominal syntax Formalisation of mathematics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bagaria, J.: A short guide to Gödel’s second incompleteness theorem. Teorema 22(3), 5–15 (2003)Google Scholar
  2. 2.
    Boolos, G.S.: The logic of provability, Cambridge University Press (1993)Google Scholar
  3. 3.
    de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser Theorem. Indag. Math. 34, 381–392 (1972)CrossRefGoogle Scholar
  4. 4.
    Feferman, S. (ed.): Kurt Gödel, Collected Works, volume I. Oxford University Press (1986)Google Scholar
  5. 5.
    Franzén, T.: Gödel’s theorem: An incomplete guide to its use and abuse. A K Peters (2005)Google Scholar
  6. 6.
    Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable binding. Form. Asp. Comput. 13, 341–363 (2001)CrossRefGoogle Scholar
  7. 7.
    Gödel, K.: On completeness and consistency. In: Feferman 4, pp 234–236Google Scholar
  8. 8.
    Gödel, K.: On formally undecidable propositions of Principia Mathematica and related systems. In: Feferman 4, pp. 144–195. First published in 1931 in the Monatshefte für Mathematik und Physik (1931)Google Scholar
  9. 9.
    Grandy, R.E.: Advanced Logic for Applications. Reidel (1977)Google Scholar
  10. 10.
    Harrison, J.: Re: Gödel’s incompleteness theorem, Email dated 15 January (2014)Google Scholar
  11. 11.
    Harrison, J.: Towards self-verification of HOL Light. In: Furbach, U., Shankar, N. (eds.) Automated Reasoning — Third International Joint Conference, IJCAR, 2006, LNAI 4130, pp. 177–191. Springer (2006)Google Scholar
  12. 12.
    Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge University Press (2009)Google Scholar
  13. 13.
    Richard, E.H.: An Introduction to Mathematical Logic. PWS Publishing Company (1995)Google Scholar
  14. 14.
    Hurd, J., Melham, T.: Theorem Proving in Higher Order Logics: TPHOLs 2005, LNCS 3603. Springer (2005)Google Scholar
  15. 15.
    Kirby, L.: Addition and multiplication of sets. Math. Logic Q. 53(1), 52–65 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Kunen, K.: Set Theory : An Introduction to Independence Proofs. North-Holland (1980)Google Scholar
  17. 17.
    Lochbihler, A.: Formalising finfuns — generating code for functions as data from Isabelle/HOL. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs, vol. 5674 of Lecture Notes in Computer Science, pp. 310–326. Springer (2009)Google Scholar
  18. 18.
    Nipkow, T.: More Church-Rosser proofs (in Isabelle/HOL). J. Autom. Reason. 26, 51–66 (2001)Google Scholar
  19. 19.
    Nipkow T., Lawrence, C. P.: Proof pearl: Defining functions over finite sets. In: Hurd and Melham 14, pp. 385–396.Google Scholar
  20. 20.
    Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order Logic. Springer. An up-to-date version is distributed with Isabelle (2002)Google Scholar
  21. 21.
    Norrish, M., Vestergaard, R.: Proof pearl: de Bruijn terms really do work. In: Schneider, K., Brandt, J. (eds.) Theorem Proving in Higher Order Logics: TPHOLs 2007, LNCS 4732, pp. 207–222. Springer (2007)Google Scholar
  22. 22.
    O’Connor, R.: Essential incompleteness of arithmetic verified by Coq. In Hurd and Melham 14Google Scholar
  23. 23.
    Russell, S.S.: O’Connor. Incompleteness & Completeness: Formalizing Logic and Analysis in Type Theory. PhD thesis, Radboud University Nijmegen (2009)Google Scholar
  24. 24.
    Lawrence, C.: Paulson. Set theory for verification: I. From foundations to functions. J. Autom. Reas. 11(3), 353–389 (1993)CrossRefzbMATHGoogle Scholar
  25. 25.
    Paulson, L.C.: The relative consistency of the axiom of choice — mechanized using Isabelle/ZF. LMS J. Comput. Math. 6, 198–248 (2003). CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Paulson, L.C.: Gödel’s incompleteness theorems. Archive of Formal Proofs. November. Formal proof development. (2013).
  27. 27.
    Paulson, L.C.: A machine-assisted proof of Gödel’s incompleteness theorems for the theory of hereditarily finite sets. Rev. Symb. Log. 7(3), 484–498 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Pitts, A.M.: Nominal sets names and symmetry in computer science. Cambridge University Press (2013)Google Scholar
  29. 29.
    Shankar, N.: Proof-checking Metamathematics. PhD thesis, University of Texas at Austin (1986)Google Scholar
  30. 30.
    Shankar, N.: Metamathematics Machines, and Gödel’s Proof. Cambridge University Press (1994)Google Scholar
  31. 31.
    Shankar, N., Shankar, B.: Church-Rosser and de Bruijn indices. E-mail (2013)Google Scholar
  32. 32.
    Świerczkowski, S.: Finite sets and Godel’s̈ incompleteness theorems. Dissertationes Mathematicae 422, 1–58 (2003). CrossRefzbMATHGoogle Scholar
  33. 33.
    Urban, C.: Nominal techniques in Isabelle/HOL. J. Autom. Reason. 40(4), 327–356 (2008)Google Scholar
  34. 34.
    Urban, C., Kaliszyk, C.: General bindings and alpha-equivalence in Nominal Isabelle. Log. Methods Comput. Sci. 8(2:14), 1–35 (2012)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Computer LaboratoryUniversity of CambridgeCambridgeEngland

Personalised recommendations