Journal of Automated Reasoning

, Volume 53, Issue 3, pp 215–243 | Cite as

Absorption for ABoxes

  • Jiewen Wu
  • Alexander Hudek
  • David Toman
  • Grant Weddell
Article

Abstract

We consider the instance checking problem over \(\mathcal {SHIQ}(\mathbf{D})\) knowledge bases, that is, the problem of determining if the class membership of a given object is logically implied by a knowledge base expressed in terms of the description logic (DL) dialect \(\mathcal {SHIQ}(\mathbf{D})\). Such problems are inevitable in conjunctive query evaluation over such knowledge bases, or indeed for any knowledge bases that rely on an ability to capture disjunction and/or negation in an underlying DL. This includes the problem of evaluating basic graph patterns occurring in SPARQL queries over RDF graphs with the so-called OWL 2 direct semantics entailment regime, that is, where the RDF graph is an OWL 2 ontology. Our main result is a novel method for such problems that derives from an adaptation of binary absorption. We show that the method works particularly well for knowledge bases that have a very large collection of factual assertions about individual objects.

Keywords

Absorption Optimization Query answering Instance checking Description logics 

References

  1. 1.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): Implementation and Optimisation Techniques, chap. 9, pp. 306–346. Cambridge Univserity Press (2003)Google Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The description logic handbook: theory, implementation, and applications. Cambridge University Press, New York (2003)Google Scholar
  3. 3.
    Baader, F., Franconi, E., Hollunder, B., Nebel, B., Profitlich, H.J.: An empirical analysis of optimization techniques for terminological representation systems, or: making KRIS get a move on. Appl. Artif. Intell. 4, 109–132 (1994)CrossRefGoogle Scholar
  4. 4.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M., Rosati, R.: Ontologies and databases: the DL-Lite approach. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.C., Schmidt, R. (eds.) Reasoning Web. Semantic Technologies for Information Systems. Lecture Notes in Computer Science, vol. 5689, pp 255–356. Springer, Heidelberg (2009)Google Scholar
  5. 5.
    Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Schonberg, E., Srinivas, K., Ma, L.: Scalable semantic retrieval through summarization and refinement. In: AAAI’07, pp. 299–304 (2007)Google Scholar
  6. 6.
    Haarslev, V., Möller, R.: On the scalability of description logic instance retrieval. J. Autom. Reason. 41(2), 99–142 (2008). doi:10.1007/s10817-008-9104-7 CrossRefMATHGoogle Scholar
  7. 7.
    Horrocks, I.: Optimising tableaux decision procedures for description logics. Ph.D. thesis, the University of Manchester (1997)Google Scholar
  8. 8.
    Horrocks, I.: Using an Expressive Description Logic: FaCT or Fiction? In: Proceedings of the Sixth International Conference on Principles of Knowledge Representation and Reasoning, pp. 636–647 (1998)Google Scholar
  9. 9.
    Horrocks, I., Sattler, U.: Optimised reasoning for shiq. In: ECAI’02, pp. 277–281 (2002)Google Scholar
  10. 10.
    Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description logics. In: Proceedings of the 6th International Conference on Logic Programming and Automated Reasoning, LPAR ’99, pp. 161–180. Springer-Verlag, London. http://dl.acm.org/citation.cfm?id=645709.664314 (1999)
  11. 11.
    Horrocks, I., Tobies, S.: Optimisation of terminological reasoning. In: Proceedings of the 2000 International Workshop on Description Logics, pp. 183–192 (2000)Google Scholar
  12. 12.
    Horrocks, I., Tobies, S.: Reasoning with axioms: theory and practice. In: Proceedings of the 7th International Conference on Principles of Knowledge Representation and Reasoning, pp. 285–296 (2000)Google Scholar
  13. 13.
    Hudek, A.K., Weddell, G.E.: Binary absorption in tableaux-based reasoning for description logics.In: Proceedings of the 2006 International Workshop on Description Logics (2006)Google Scholar
  14. 14.
    Kollia, I., Glimm, B.: Cost based query ordering over OWL ontologies. In: The Semantic Web - ISWC 2012 - 11th International Semantic Web Conference, Boston, MA, USA, November 11-15, 2012, Proceedings, Part I, pp. 231–246 (2012)Google Scholar
  15. 15.
    Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach to query answering in DL-Lite. In: Proceedings of the 12th International Conference on Principles of Knowledge Representation and Reasoning (2010)Google Scholar
  16. 16.
    Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach to ontology-based data access. In: Walsh, T. (ed.) Proceedings of the 22nd International Joint Conference on Artificial Intelligence, pp 2656–2661 (2011)Google Scholar
  17. 17.
    Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description logic EL using a relational database system. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, pp. 2070–2075 (2009)Google Scholar
  18. 18.
    Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics. J. Artif. Intell. Res. (JAIR) 36, 165–228 (2009)MathSciNetMATHGoogle Scholar
  19. 19.
    Nuutila, E.: Efficient transitive closure computation in large digraphs. Acta Polytechnica Scandinavia: Math. Comput. Eng. 74, 1–124 (1995)Google Scholar
  20. 20.
    Pound, J., Toman, D., Weddell, G.E., Wu, J.: An assertion retrieval algebra for object queries over knowledge bases. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, pp. 1051–1056 (2011)Google Scholar
  21. 21.
    Rosati, R., Almatelli, A.: Improving query answering over DL-Lite ontologies. In: Proceedings of the 12th International Conference on Principles of Knowledge Representation and Reasoning (2010)Google Scholar
  22. 22.
    Service, A.R.: U.S. Department of Agriculture national nutrient database for standard reference, release 25 (2012). Online: http://www.ars.usda.gov/ba/bhnrc/ndl
  23. 23.
    Tobies, S.: The complexity of reasoning with cardinality restrictions and nominals in expressive description logics. J. Artif. Intell. Res. (JAIR) 12, 199–217 (2000)MathSciNetMATHGoogle Scholar
  24. 24.
    Tsarkov, D., Horrocks, I.: Efficient reasoning with range and domain constraints. In: Proceedings of the 2004 International Workshop on Description Logics (DL2004) (2004)Google Scholar
  25. 25.
    Wandelt, S., Möller, R.: Towards abox modularization of semi-expressive description logics. Appl. Ontol. 7(2), 133–167 (2012)Google Scholar
  26. 26.
    Wessel, M., Möller, R.: Flexible software architectures for ontology-based information systems. J. Appl. Logic 7(1), 75–99 (2009)CrossRefMATHGoogle Scholar
  27. 27.
    Wu, J., Hudek, A.K., Toman, D., Weddell, G.E.: Assertion absorption in object queries over knowledge bases. In: KR’12 (2012)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jiewen Wu
    • 1
  • Alexander Hudek
    • 1
  • David Toman
    • 1
  • Grant Weddell
    • 1
  1. 1.D.R. Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations