Journal of Automated Reasoning

, Volume 53, Issue 2, pp 173–213 | Cite as

Learning-Assisted Automated Reasoning with Flyspeck

Open Access
Article

Abstract

The considerable mathematical knowledge encoded by the Flyspeck project is combined with external automated theorem provers (ATPs) and machine-learning premise selection methods trained on the Flyspeck proofs, producing an AI system capable of proving a wide range of mathematical conjectures automatically. The performance of this architecture is evaluated in a bootstrapping scenario emulating the development of Flyspeck from axioms to the last theorem, each time using only the previous theorems and proofs. It is shown that 39 % of the 14185 theorems could be proved in a push-button mode (without any high-level advice and user interaction) in 30 seconds of real time on a fourteen-CPU workstation. The necessary work involves: (i) an implementation of sound translations of the HOL Light logic to ATP formalisms: untyped first-order, polymorphic typed first-order, and typed higher-order, (ii) export of the dependency information from HOL Light and ATP proofs for the machine learners, and (iii) choice of suitable representations and methods for learning from previous proofs, and their integration as advisors with HOL Light. This work is described and discussed here, and an initial analysis of the body of proofs that were found fully automatically is provided.

Keywords

Automated reasoning Interactive theorem proving HOL light Flyspeck Artificial intelligence Machine learning Formal mathematics 

References

  1. 1.
    Adams, M.: Introducing HOL Zero- (extended abstract). In: Fukuda, K., van der Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS (LNCS), vol. 6327, pp 142–143. LNCS, Springer (2010)Google Scholar
  2. 2.
    Akbarpour, B., Paulson, L.C.: MetiTarski: an automatic theorem prover for real-valued special functions. J. Autom. Reason. 44(3), 175–205 (2010)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Alama, J., Brink, K., Mamane, L., Urban, J.: Large formal wikis: issues and solutions. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) Calculemus/MKM, vol. 6824, pp 133–148. LNCS, Springer (2011)Google Scholar
  4. 4.
    Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection for mathematics by corpus analysis and kernel methods. J. Autom. Reason. 52(2), 191–213 (2014)CrossRefGoogle Scholar
  5. 5.
    Alama, J., Kühlwein, D., Urban, J.: Automated and human proofs in general mathematics: an initial comparison. Bjrner, N., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence, and Reasoning - 18th International Conference, LPAR-18, Merida, Venezuela, March 11-15, 2012. Proceedings, vol. 7180, pp. 37–45. LNCS, SpringerGoogle Scholar
  6. 6.
    Armando, A., Baumgartner, P., Dowek, G.: Automated Reasoning, 4th International Joint Conference, IJCAR 2008, Sydney, Australia, 12–15 August 2008. Proceedings, vol. 5195. LNCS, Springer (2008)Google Scholar
  7. 7.
    Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.): Intelligent Computer Mathematics, 10th International Conference, AISC 2010, 17th Symposium, Calculemus 2010, and 9th International Conference, MKM 2010, Paris, France, July 5-10, 2010. Proceedings, vol. 6167. LNCS, Springer (2010)Google Scholar
  8. 8.
    Beeson, M.: Automatic derivation of the irrationality of e. J. Symb. Comput. 32(4), 333–349 (2001)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Belinfante, J. G. F.: On computer-assisted proofs in ordinal number theory. J. Autom. Reason. 22(2), 341–378 (1999)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Benzmüller, C., Paulson, L.C., Theiss, F., Fietzke, A.: LEO-II - a cooperative automatic theorem prover for classical higher-order logic (system description). In: Armando, A., Baumgartner, P., Dowek, G., (eds.) Automated Reasoning, 4th International Joint Conference, IJCAR 2008, Sydney, Australia, August 12-15, 2008. Proceedings, vol. 5195, pp. 162–170. LNCS, Springer (2008)Google Scholar
  11. 11.
    Bjørner, N., Sofronie-Stokkermans, V. (eds.): Automated Deduction - CADE-23 - 23rd International Conference on Automated Deduction, Wroclaw, Poland, 31 July–5 August 2011. Proceedings, vol. 6803. LNCS, Springer (2011)Google Scholar
  12. 12.
    Bjørner, N., Voronkov, A. (eds.): Logic for Programming, Artificial Intelligence, and Reasoning - 18th International Conference, LPAR-18, Mérida, Venezuela, 11–15 March 2012. Proceedings, vol. 7180. LNCS, Springer (2012)Google Scholar
  13. 13.
    Blanchette, J. C.: Automatic Proofs and Refutations for Higher-Order Logic. PhD thesis, Fakultät für Informatik, Technische Universität München (2012). http://www21.in.tum.de/blanchet/phdthesis.pdf.
  14. 14.
    Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT solvers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) Automated Deduction - CADE-23 - 23rd International Conference on Automated Deduction, Wroclaw, Poland, July 31 - August 5, 2011. Proceedings, vol. 6803, pp. 116–130. LNCS, Springer (2011)Google Scholar
  15. 15.
    Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding monomorphic and polymorphic types. In: Piterman, N., Smolka, S.A. (eds.) TACAS, Lecture Notes in Computer Science, vol. 7795, pp. 493–507. Springer (2013)Google Scholar
  16. 16.
    Blanchette, J.C., Bulwahn, L., Nipkow, T.: Automatic proof and disproof in Isabelle/HOL. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS, vol. 6989, pp. 12–27. LNCS, Springer (2011)Google Scholar
  17. 17.
    Blanchette, J.C., Paskevich, A.: TFF1: the TPTP typed first-order form with rank-1 polymorphism. In: Bonacina, M.P. (ed.) CADE, Lecture Notes in Computer Science, vol. 7898, pp. 414–420. Springer (2013)Google Scholar
  18. 18.
    Blanchette, J.C., Popescu, A., Wand, D., Weidenbach, C.: More SPASS with Isabelle - superposition with hard sorts and configurable simplification. In: Beringer, L., Felty, A.P. (eds.) ITP, vol. 7406, pp. 345–360. LNCS, Springer (2012)Google Scholar
  19. 19.
    Böhme, S., Nipkow, T.: Sledgehammer: judgement day. In: Giesl, J., Hähnle, R. (eds.) IJCAR, vol. 6173, pp. 107–121. LNCS, Springer (2010)Google Scholar
  20. 20.
    Brown, C.E.: Satallax: an automatic higher-order prover. In: Gramlich, B., Miller, D., Sattler, U. (eds.) Automated Reasoning - 6th International Joint Conference, IJCAR 2012, Manchester, UK, June 26-29, 2012. Proceedings, vol. 7364, pp. 111–117. LNCS, Springer (2012)Google Scholar
  21. 21.
    Carlson, A., Cumby, C., Rosen, J., Roth, D.: The SNoW Learning Architecture, vol. 5 Technical Report UIUCDCS-R-99-2101, UIUC Computer Science Department (1999)Google Scholar
  22. 22.
    Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5, 56–68 (1940)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Dahn, I.: Interpretation of a Mizar-like logic in first-order logic. In: Caferra, R., Salzer, G. (eds.) FTP (LNCS Selection), vol. 1761, pp. 137–151. LNCS, Springer (1998)Google Scholar
  24. 24.
    Dahn, I., Wernhard, C.: First order proof problems extracted from an article in the MIZAR Mathematical Library. In: Bonacina, M.P., Furbach, U. (eds.) International Workshop on First-Order Theorem Proving (FTP’97), RISC-Linz Report Series No. 97-50, pp. 58–62. Johannes Kepler Universität, Linz (Austria) (1997)Google Scholar
  25. 25.
    de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS, vol. 4963, pp. 337–340. LNCS, Springer (2008)Google Scholar
  26. 26.
    Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive program verification. In: Damm, W., Hermanns, H. (eds.) CAV, vol. 4590, pp. 173–177. LNCS, Springer (2007)Google Scholar
  27. 27.
    Furbach, U., Shankar, N. (eds.): Automated Reasoning, Third International Joint Conference, IJCAR 2006, Seattle, WA, USA, August 17-20 2006. Proceedings, vol. 4130. LNCS, Springer (2006)Google Scholar
  28. 28.
    Van Gelder, A., Sutcliffe, G.: Extending the TPTP language to higher-order logic with automated parser generation. In: Furbach, U., Shankar, N. (eds.) Automated Reasoning, Third International Joint Conference, IJCAR 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, vol. 4130, pp. 156–161. LNCS, Springer (2006)Google Scholar
  29. 29.
    Genesereth, M.R., Fikes, R. E.: Knowledge Interchange Format, Version 3.0 Reference Manual. Technical Report Logic-92-1, Computer Science Department, Stanford University (1992)Google Scholar
  30. 30.
    Gramlich, B., Miller, D., Sattler, U. (eds.): Automated Reasoning - 6th International Joint Conference, IJCAR 2012, Manchester, UK, 26–29 June 2012. Proceedings, vol. 7364. LNCS, Springer (2012)Google Scholar
  31. 31.
    Hähnle, R., Kerber, M., Weidenbach, C.: Common Syntax of the DFGSchwerpunktprogramm Deduction. Technical Report TR 10/96, Fakultät für Informatik, Universität Karlsruhe, Karlsruhe, Germany (1996)Google Scholar
  32. 32.
    Hales, T.C.: Introduction to the Flyspeck project. In: Coquand, T., Lombardi, H., Roy, M.-F. (eds.) Mathematics, Algorithms, Proofs, number 05021 in Dagstuhl Seminar Proceedings, pp. 1–11. Dagstuhl, Germany (2006). Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, GermanyGoogle Scholar
  33. 33.
    Hales, T. C. Mathematics in the age of the Turing machine. Lecture Notes in Logic (2012), to appear. http://www.math.pitt.edu/thales/papers/turing.pdf
  34. 34.
    Hales, T. C., Harrison, J., McLaughlin, S., Nipkow, T., Obua, S., Zumkeller, R.: A revision of the proof of the Kepler Conjecture. Discret. Comput. Geom. 44(1), 1–34 (2010)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M.K., Camilleri, A.J. (eds.) FMCAD, vol. 1166, pp. 265–269. LNCS, Springer (1996)Google Scholar
  36. 36.
    Harrison, J.: A Mizar mode for HOL. In: von Wright, J., Grundy, J., Harrison, J. (eds.) TPHOLs, vol. 1125, pp. 203–220. LNCS, Springer (1996)Google Scholar
  37. 37.
    Harrison, J.: Optimizing proof search in model elimination. In: McRobbie, M., Slaney, J.K. (eds.) Proceedings of the 13th International Conference on Automated Deduction, vol. 1104, pp. 313–327. LNAI, Springer-Verlag (1996)Google Scholar
  38. 38.
    Hindley, R.: The principal type-scheme of an object in combinatory logic. Trans. Am. Math. Soc. 146, 29–60 (1969)MathSciNetMATHGoogle Scholar
  39. 39.
    Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: Bjrner, N., Sofronie-Stokkermans, V. (eds.) Automated Deduction - CADE-23 - 23rd International Conference on Automated Deduction, Wroclaw, Poland, July 31 - August 5, 2011. Proceedings, vol. 6803, pp. 299–314. LNCS, Springer (2011)Google Scholar
  40. 40.
    Hurd, J.: Integrating Gandalf and HOL. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs, vol. 1690, pp. 311–322. LNCS, Springer (1999)Google Scholar
  41. 41.
    Hurd, J.: An LCF-style interface between HOL and first-order logic. In: Voronkov, A. (ed.) CADE, Lecture Notes in Computer Science, vol. 2392, pp. 134–138. LNCS, Springer (2002)Google Scholar
  42. 42.
    Hurd, J.: First-order proof tactics in higher-order logic theorem provers. In: Archer, M., Di Vito, B., Muñoz, C. (eds.) Design and Application of Strategies/Tactics in Higher Order Logics (STRATA 2003), number NASA/CP-2003-212448 in NASA Technical, Reports, pp. 56–68, September (2003)Google Scholar
  43. 43.
    Kaliszyk, C.: Web interfaces for proof assistants. Electr. Notes Theor. Comput. Sci. 174(2), 49–61 (2007)CrossRefGoogle Scholar
  44. 44.
    Kaliszyk, C., Krauss, A.: Scalable LCF-style proof translation. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) Proceedings of the 4th International Conference on Interactive Theorem Proving (ITP’13), vol. 7998, pp. 51–66. LNCS, Springer Verlag (2013)Google Scholar
  45. 45.
    Kaliszyk, C., Urban, J.: Initial experiments with external provers and premise selection on HOL Light corpora. In: Fontaine, P., Schmidt, R.A., Schulz, S. (eds.) PAAR-2012, EPiC Series, vol. 21, pp. 72–81. EasyChair (2013)Google Scholar
  46. 46.
    Kepler, J.: Strena seu de nive sexangula. Frankfurt: Gottfried. Tampach, 1611Google Scholar
  47. 47.
    Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina, N., Veith, H. (eds.) CAV, of Lecture Notes in Computer Science, vol. 8044, pp. 1–35. Springer (2013)Google Scholar
  48. 48.
    Kuehlwein, D., Urban, J.: Learning from multiple proofs: first experiments. In: Fontaine, P., Schmidt, R.A., Schulz, S. (eds.) PAAR-2012, volume 21 of EPiC Series, vol. 21, pp. 82–94. EasyChair (2013)Google Scholar
  49. 49.
    Kühlwein, D., van Laarhoven, T., Tsivtsivadze, E., Urban, J., Heskes, T.: Overview and evaluation of premise selection techniques for large theory mathematics. In: Gramlich, B., Miller, D., Sattler, U. (eds.) Automated Reasoning - 6th International Joint Conference, IJCAR 2012, Manchester, UK, June 26-29, 2012. Proceedings, vol. 7364, pp. 378–392. LNCS, Springer (2012)Google Scholar
  50. 50.
    Loveland, D. W.: Mechanical theorem proving by model elimination. J. ACM 15(2), 236–251 (1968)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Loveland, D. W.: Automated Theorem Proving: A Logical Basis. North-Holland, Amsterdam (1978)MATHGoogle Scholar
  52. 52.
    McAllester, D. A.: Ontic: A Knowledge Representation System for Mathematics. MIT Press, Cambridge (1989)Google Scholar
  53. 53.
    McCune, W.: Prover9 and Mace4. http://www.cs.unm.edu/mccune/prover9/, (2005–2010)
  54. 54.
    McCune, W., Matlin, O.S.: Ivy: a preprocessor and proof checker for first-order logic. In: Kaufmann, M., Manolios, P., Strother Moore, J. (eds.) Computer-Aided Reasoning: ACL2 Case Studies, in Advances in Formal Methods, vol. 4, pp. 265–282. Kluwer Academic Publishers (2000)Google Scholar
  55. 55.
    McCune, W., Wos, L.: Otter: the CADE-13 competition incarnations. J. Autom. Reason. 18(2), 211–220 (1997)CrossRefGoogle Scholar
  56. 56.
    Meier, A.: System description: tramp: transformation of machine-found proofs into nd-proofs at the assertion level. In: McAllester, D.A. (ed.) CADE, vol. 1831, pp. 460–464. LNCS, Springer (2000)Google Scholar
  57. 57.
    Meng, J., Paulson, L. C.: Translating higher-order clauses to first-order clauses. J. Autom. Reason. 40(1), 35–60 (2008)MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    Obua, S., Skalberg, S.: Importing hol into Isabelle/HOL. In: Furbach, U., Shankar, N. (eds.) Automated Reasoning, Third International Joint Conference, IJCAR 2006, Seattle, WA, USA, August 17-20, 2006, vol. 4130, pp. 298–302. LNCS, Springer (2006)Google Scholar
  59. 59.
    Paulson, L. C.: A generic tableau prover and its integration with Isabelle. J. UCS 5(3), 73–87 (1999)MathSciNetMATHGoogle Scholar
  60. 60.
    Paulson, L.C., Blanchette, J.: Three years of experience with Sledgehammer, a practical link between automated and interactive theorem provers. In: 8th IWIL (2010). Invited talk.Google Scholar
  61. 61.
    Paulson, L.C., Susanto, K.W.: Source-level proof reconstruction for interactive theorem proving. In: Schneider, K., Brandt, J. (eds.) TPHOLs, vol. 4732, pp. 232–245. LNCS, Springer (2007)Google Scholar
  62. 62.
    Pease, A., Sutcliffe, G.: First order reasoning on a large ontology. In: Sutclie, G., Urban, J., Schulz, S. (eds.) Proceedings of the CADE-21 Workshop on Empirically Successful Automated Reasoning in Large Theories, Bremen, Germany, 17th July 2007, CEUR Workshop, vol. 257. CEUR-WS.org (2007)Google Scholar
  63. 63.
    Pitts, A.: The HOL logic. In: Gordon, M.J.C., Melham, T.F. (eds.) Introduction to HOL: A Theorem Proving Environment for Higher Order Logic. Cambridge University Press (1993)Google Scholar
  64. 64.
    Poincaré, H.: The Foundations of Science: Science and Hypothesis, The Value of Science, Science and Method. The Science Press, New York (1913)MATHGoogle Scholar
  65. 65.
    Prevosto, V., Waldmann, U.: SPASS+T. In: Sutcliffe, G., Schmidt, R., Schulz, S. (eds.) ESCoR 2006, CEUR, vol. 192, pp. 18–33 (2006)Google Scholar
  66. 66.
    Quaife, A.: Automated Development of Fundamental Mathematical Theories. Kluwer Academic Publishers (1992)Google Scholar
  67. 67.
    Rudnicki, P., Trybulec, A.: On the integrity of a repository of formalized mathematics. In: Asperti, A., Buchberger, B., Davenport, J.H. (eds.) MKM, vol. 2594, pp. 162–174. LNCS, Springer (2003)Google Scholar
  68. 68.
    Schulz, S.: E - A Brainiac Theorem Prover. AI Commun. 15(2–3), 111–126 (2002)MATHGoogle Scholar
  69. 69.
    Slind, K., Gordon, M.J.C., Boulton, R.J., Bundy, A.: System description: an interface between CLAM and HOL. In: Kirchner, C., Kirchner, H. (eds.) CADE, vol. 1421, pp. 134–138. LNCS, Springer (1998)Google Scholar
  70. 70.
    Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the TPTP THF infrastructure. J. Formal. Reason. 3(1), 1–27 (2010)MATHGoogle Scholar
  71. 71.
    Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed first-order form with arithmetic. In: Bjrner, N., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence, and Reasoning - 18th International Conference, LPAR-18, Merida, Venezuela, March 11-15, 2012. Proceedings, vol. 7180, pp. 406–419. LNCS, Springer (2012)Google Scholar
  72. 72.
    Sutcliffe, G., Schulz, S., Claessen, K., Van Gelder, A.: Using the TPTP language for writing derivations and finite interpretations. In: Furbach, U., Shankar, N. (eds.) Automated Reasoning, Third International Joint Conference, IJCAR 2006, Seattle, WA, USA, August 17-20, 2006. Proceedings, vol. 4130, pp. 67–81. LNCS, Springer (2006)Google Scholar
  73. 73.
    Sutcliffe, G., Urban, J., Schulz, S. (eds.): Proceedings of the CADE-21 Workshop on Empirically Successful Automated Reasoning in Large Theories, Bremen, Germany, 17th July 2007, CEUR Workshop Proceedings, vol. 257. CEUR-WS.org (2007)Google Scholar
  74. 74.
    Urban, J.: Translating Mizar for first order theorem provers. In: MKM, vol. 2594, pp. 203–215. LNCS, Springer (2003)Google Scholar
  75. 75.
    Urban, J.: MPTP - motivation, implementation, first experiments. J. Autom. Reason. 33(3-4), 319–339 (2004)MathSciNetCrossRefMATHGoogle Scholar
  76. 76.
    Urban, J.: MoMM - fast interreduction and retrieval in large libraries of formalized mathematics. Int. J. Artif. Intell. Tools 15(1), 109–130 (2006)CrossRefGoogle Scholar
  77. 77.
    Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom. Reason. 37(1–2), 21–43 (2006)MATHGoogle Scholar
  78. 78.
    Urban, J.: An overview of methods for large-theory automated theorem proving (Invited Paper). In: Höfner, P., McIver, A., Struth, G. (eds.) ATE Workshop, CEUR Workshop Proceedings, vol. 760, pp. 3–8. CEUR-WS.org (2011)Google Scholar
  79. 79.
    Urban, J.: BliStr: The Blind Strategymaker. CoRR (2013). arXiv: 1301.2683
  80. 80.
    Urban, J., Rudnicki, P., Sutcliffe, G.: ATP and presentation service for Mizar formalizations. J. Autom. Reason. 50, 229–241 (2013)MathSciNetCrossRefMATHGoogle Scholar
  81. 81.
    Urban, J., Sutcliffe, G.: Automated reasoning and presentation support for formalizing mathematics in Mizar. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) Intelligent Computer Mathematics, 10th International Conference, AISC 2010, 17th Symposium, Calculemus 2010, and 9th International Conference, MKM 2010, Paris, France, July 5-10, 2010. Proceedings, vol. 6167, pp. 132–146. LNCS, Springer (2010)Google Scholar
  82. 82.
    Urban, J., Sutcliffe, G., Pudlák, P., Vyskočil, J.: MaLARea SG1 - Machine Learner for Automated Reasoning with Semantic Guidance. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) Automated Reasoning, 4th International Joint Conference, IJCAR 2008, Sydney, Australia, August 12-15, 2008. Proceedings, vol. 5195, pp. 441–456. LNCS, Springer (2008)Google Scholar
  83. 83.
    Urban, J., Vyskočil, J.: Theorem proving in large formal mathematics as an emerging AI field. In: Bonacina, M.P., Stickel, M.E. (eds.) Automated reasoning and mathematics: essays in memory of William McCune, vol. 7788, pp. 240–257. LNAI, Springer (2013)Google Scholar
  84. 84.
    Urban, J., Vyskočil, J., Štěpánek, P.: MaLeCoP: Machine learning connection prover. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX, vol. 6793, pp. 263–277. LNCS, Springer (2011)Google Scholar
  85. 85.
    Wall, L.: Programming Perl, 3rd edn. O’Reilly & Associates, Inc., Sebastopol (2000)Google Scholar
  86. 86.
    Weidenbach, C., Afshordel, B., Brahm, U., Cohrs, C., Engel, T., Keen, E., Theobalt, C., Topić, D.: System description: SPASS version 1.0.0. In: Automated Deduction - CADE-16, vol. 1632, pp. 378–382. LNCS, Springer Berlin Heidelberg (1999)Google Scholar
  87. 87.
    Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS Version 3.5. In: Schmidt, R.A. (ed.) CADE, vol. 5663, pp. 140–145. LNCS, Springer (2009)Google Scholar
  88. 88.
    Wiedijk, F.: Estimating the Cost of a Standard Library for a Mathematical Proof Checker. http://www.cs.ru.nl/freek/notes/mathstdlib2.pdf (2001)
  89. 89.
    Wiedijk, F.: A synthesis of the procedural and declarative styles of interactive theorem proving, Vol. 8 (2012)Google Scholar

Copyright information

© The Author(s) 2014

Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  1. 1.University of InnsbruckInnsbruckAustria
  2. 2.Radboud UniversityNijmegenNetherlands

Personalised recommendations