Advertisement

Journal of Automated Reasoning

, Volume 53, Issue 2, pp 105–127 | Cite as

Theorem of Three Circles in Coq

  • Julianna ZsidóEmail author
Article

Abstract

The theorem of three circles in real algebraic geometry guarantees the termination and correctness of an algorithm of isolating real roots of a univariate polynomial. The main idea of its proof is to consider polynomials whose roots belong to a certain area of the complex plane delimited by straight lines. After applying a transformation involving inversion this area is mapped to an area delimited by circles. We provide a formalisation of this rather geometric proof in Ssreflect, an extension of the proof assistant Coq, that supports a variety of algebraic tools. They allow us to formalise the proof from an algebraic point of view.

Keywords

Formalisation Coq Three circles Bernstein coefficients Normal polynomial Real root isolation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10817_2013_9299_MOESM1_ESM.v (52 kb)
(V 51.8 KB)
10817_2013_9299_MOESM2_ESM.v (30 kb)
(V 29.8 KB)
10817_2013_9299_MOESM3_ESM.v (14 kb)
(V 14.0 KB)

References

  1. 1.
    Basu, S., Pollack, R., Roy, M.F.: Algorithms in real algebraic geometry. In: Algorithms and Computation in Mathematics, vol. 10, 2nd edn. Springer-Verlag, Berlin (2006)Google Scholar
  2. 2.
    Bertot, Y., Castéran, P.: Interactive theorem proving and program development. In: Texts in Theoretical Computer Science. An EATCS Series. Springer-Verlag, Berlin (2004). Coq’Art: the calculus of inductive constructions, With a foreword by Gérard Huet and Christine Paulin-MohringCrossRefGoogle Scholar
  3. 3.
    Bertot, Y., Guilhot, F., Mahboubi, A.: A formal study of Bernstein coefficients and polynomials. Math. Struct. Comput. Sci. 21(4), 731–761 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cohen, C.: Formalized Algebraic Numbers: Construction and First Order Theory. Ph.D. thesis, École polytechnique, France (2012)Google Scholar
  5. 5.
    Cohen, C., Mahboubi, A.: Formal proofs in real algebraic geometry: from ordered fields to quantifier elimination. Log. Methods Comput. Sci. 8(1) (2012)Google Scholar
  6. 6.
    Coq Development Team, T.: The Coq Proof Assistant. http://coq.inria.fr
  7. 7.
    Coq Development Team, T.: The Coq Proof Assistant Reference Manual—Version V8.4. http://coq.inria.fr (2012)
  8. 8.
    Dénès, M., Mörtberg, A., Siles, V.: A refinement-based approach to computational algebra in coq. In: Beringer, L., Felty, A.P. (eds.) ITP, Lecture Notes in Computer Science, vol. 7406, pp. 83–98. Springer (2012)Google Scholar
  9. 9.
    Eigenwillig, A.: Real Root Isolation for Exact and Approximate Polynomials using Descartes’ Rule of Signs. Ph.D. thesis, Universität des Saarlandes, Germany (2008)Google Scholar
  10. 10.
    Flyspeck: Thomas C. Hales, Project Leader: The Flypseck Project. NSA grant 0804189. https://code.google.com/p/flyspeck/
  11. 11.
    ForMath: Thierry Coquand, Project Leader: The ForMath Project. EU FP7 STREP FET, grant agreement nr. 243847, March 2010–February 2013. http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/ForMath
  12. 12.
    Gonthier, G., Mahboubi, A.: An introduction to small scale reflection. Coq. J. Formalized Reason. 3(2), 95–152 (2010)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Hales, T.C., Harrison, J., McLaughlin, S., Nipkow, T., Obua, S., Zumkeller, R.: A revision of the proof of the kepler conjecture. Discret. Comput. Geom. 44(1), 1–34 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kerber, M., Sagraloff, M.: Efficient real root approximation. In: Schost, É., Emiris, I.Z. (eds.) ISSAC, pp. 209–216. ACM (2011)Google Scholar
  15. 15.
    Letouzey, P.: A new extraction for coq. In: Geuvers, H., Wiedijk, F. (eds.) TYPES, Lecture Notes in Computer Science, vol. 2646, pp. 200–219. Springer (2002)Google Scholar
  16. 16.
    Mahboubi, A.: Contributions à la certification des calculs dans R: théorie, preuves, programmation. These, Université de Nice Sophia-Antipolis. http://hal.inria.fr/tel-00117409 (2006)
  17. 17.
    Mahboubi, A.: Programming and certifying a CAD algorithm in the Coq system. In: Dagstuhl Seminar 05021—Mathematics, Algorithms, Proofs. Dagstuhl Online Research Publication Server, Dagstuhl. http://hal.inria.fr/hal-00819492 (2006)
  18. 18.
    Mahboubi, A.: Implementing the cylindrical algebraic decomposition within the Coq system. Math. Structures Comput. Sci. 17(1), 99–127 (2007). doi: 10.1017/S096012950600586X MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Mehlhorn, K., Sagraloff, M.: Isolating real roots of real polynomials. In: Johnson, J.R., Park, H., Kaltofen, E. (eds.) ISSAC, pp. 247–254. ACM (2009)Google Scholar
  20. 20.
    Muñoz, C.A., Narkawicz, A.: Formalization of bernstein polynomials and applications to global optimization. J. Autom. Reason. 51(2), 151–196 (2013)CrossRefGoogle Scholar
  21. 21.
    Sagraloff, M.: When Newton meets Descartes: a simple and fast algorithm to isolate the real roots of a polynomial. In: van der Hoeven, J., van Hoeij, M. (eds.) ISSAC, pp. 297–304. ACM (2012)Google Scholar
  22. 22.
    Ssreflect: The Mathematical Components Project: Ssreflect Extension and Libraries. http://www.msr-inria.com/projects/mathematical-components
  23. 23.
    Zumkeller, R.: Global Optimization in Type Theory. These, École Polytechnique. http://www.alcave.net (2008)

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.INRIA Sophia AntipolisSophia Antipolis CedexFrance

Personalised recommendations