Journal of Automated Reasoning

, Volume 50, Issue 2, pp 203–210 | Cite as

On Rewriting Rules in Mizar

  • Artur KorniłowiczEmail author
Open Access


This paper presents some tentative experiments in using a special case of rewriting rules in Mizar (Mizar homepage: rewriting a term as its subterm. A similar technique, but based on another Mizar mechanism called functor identification (Korniłowicz 2009) was used by Caminati, in his paper on basic first-order model theory in Mizar (Caminati, J Form Reason 3(1):49–77, 2010, Form Math 19(3):157–169, 2011). However for this purpose he was obligated to introduce some artificial functors. The mechanism presented in the present paper looks promising and fits the Mizar paradigm.


Proof assistant Natural deduction Computer algebra system Term rewriting Mizar 


  1. 1.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press (1998)Google Scholar
  2. 2.
    Caminati, M.B.: Basic first-order model theory in Mizar. J. Form. Reason. 3(1), 49–77 (2010)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Caminati, M.B.: Preliminaries to classical first-order model theory. Form. Math. 19(3), 157–169 (2011)Google Scholar
  4. 4.
    Davis, M.: Obvious logical inferences. In: Proceedings of the Seventh International Joint Conference on Artificial Intelligence, pp. 530–531 (1981)Google Scholar
  5. 5.
    Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpression problem. J. ACM 27, 758–771 (1980). doi: 10.1145/322217.322228 MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Grabowski, A., Korniłowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Form. Reason., Special Issue: User Tutorials I 3(2), 153–245 (2010)zbMATHGoogle Scholar
  7. 7.
    Korniłowicz, A.: How to define terms in Mizar effectively. In: Grabowski, A., Naumowicz, A. (eds.) Computer Reconstruction of the Body of Mathematics. Studies in Logic, Grammar and Rhetoric, vol. 18(31), pp. 67–77. University of Białystok (2009)Google Scholar
  8. 8.
    Naumowicz, A., Byliński, C.: Improving Mizar texts with properties and requirements. In: A. Asperti (ed.) MKM-2004. LNCS, vol. 3119, pp. 290–301. Springer, Berlin Heidelberg (2004)Google Scholar
  9. 9.
    Naumowicz, A., Korniłowicz, A.: A brief overview of Mizar. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) Proc. 22nd International Conference, TPHOLs, Munich, Germany. LNCS, vol. 5674, pp. 67–72. Springer, Berlin Heidelberg (2009)Google Scholar
  10. 10.
    Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure. J. ACM 27, 356–364 (1980). doi: 10.1145/322186.322198 MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Nieuwenhuis, R., Oliveras, A.: Proof-producing congruence closure. In: Giesl, J. (ed.) 16th International Conference on Term Rewriting and Applications, RTA’05. Lecture Notes in Computer Science, vol. 3467, pp. 453–468. Springer (2005)Google Scholar
  12. 12.
    Rudnicki, P.: Obvious inferences. J. Autom. Reasoning 3(4), 383–393 (1987). doi: 10.1007/BF00247436 MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Rudnicki, P., Trybulec, A.: Mathematical knowledge management in Mizar. In: Proc. of MKM 2001 (2001)Google Scholar
  14. 14.
    Shostak, R.E.: An algorithm for reasoning about equality. Commun. ACM 21, 583–585 (1978). doi: 10.1145/359545.359570 MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Institute of InformaticsUniversity of BiałystokBiałystokPoland

Personalised recommendations