Journal of Automated Reasoning

, Volume 50, Issue 3, pp 317–354 | Cite as

Multi-Completion with Termination Tools

  • Sarah Winkler
  • Haruhiko Sato
  • Aart Middeldorp
  • Masahito Kurihara
Open Access
Article

Abstract

Knuth–Bendix completion is a classical calculus in automated deduction for transforming a set of equations into a confluent and terminating set of directed equations which can be used to decide the induced equational theory. Multi-completion with termination tools constitutes an approach that differs from the classical method in two respects: (1) external termination tools replace the reduction order—a typically critical parameter—as proposed by Wehrman et al. (2006), and (2) multi-completion as introduced by Kurihara and Kondo (1999) is used to keep track of multiple orientations in parallel while exploiting sharing to boost efficiency. In this paper we describe the inference system, give the full proof of its correctness and comment on completeness issues. Critical pair criteria and isomorphisms are presented as refinements together with all proofs. We furthermore describe the implementation of our approach in the tool \(\mathsf{mkbTT}\), present extensive experimental results and report on new completions.

Keywords

Term rewriting Knuth–Bendix completion Termination tools Multi-completion 

References

  1. 1.
    Alarcón, B., Gutiérrez, R., Iborra, J., Lucas, S.: Proving termination of context-sensitive rewriting with MU-TERM. In: Proc. 6th PROLE. ENTCS, vol. 188, pp. 105–115 (2007)Google Scholar
  2. 2.
    Bachmair, L.: Canonical equational proofs. In: Progress in Theoretical Computer Science. Birkhäuser (1991)Google Scholar
  3. 3.
    Bachmair, L., Dershowitz, N.: Critical pair criteria for completion. J. Symb. Comput. 6(1), 1–18 (1988)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bachmair, L., Dershowitz, N.: Equational inference, canonical proofs, and proof orderings. J. ACM 41(2), 236–276 (1994)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Bündgen, R., Göbel, M., Küchlin, W.: A fine-grained parallel completion procedure. In: Proc. 7th ISSAC, pp. 269–277 (1994)Google Scholar
  6. 6.
    Christian, J.: Fast Knuth–Bendix completion. In Proc. 3rd RTA. LNCS, vol. 355, pp. 551–555 (1989)Google Scholar
  7. 7.
    Dershowitz, N., Marcus, L., Tarlecki, A.: Existence, uniqueness, and construction of rewrite systems. SIAM J. Comput. 17, 629–639 (1988)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic termination proofs in the dependency pair framework. In: Proc. 3rd IJCAR. LNAI, vol. 4130, pp. 281–286 (2006)Google Scholar
  9. 9.
    Graf, P.: Term indexing. In: LNAI, vol. 1053. Springer (1996)Google Scholar
  10. 10.
    Kapur, D., Musser, D.R., Narendran, P.: Only prime superpositions need be considered in the Knuth–Bendix completion procedure. J. Symb. Comput. 6(1), 19–36 (1988)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Klein, D., Hirokawa, N.: Maximal completion (system description). In: Proc. 22nd RTA. LIPIcs, vol. 10 pp. 71–80 (2011)Google Scholar
  12. 12.
    Knuth, D.E., Bendix, P.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press (1970)Google Scholar
  13. 13.
    Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2. In: Proc. 20th RTA. LNCS, vol. 5595, pp. 295–304 (2009)Google Scholar
  14. 14.
    Küchlin, W.: A confluence criterion based on the generalised Newman lemma. In: Proc. 2nd EUROCAL. LNCS, vol. 204, pp. 390–399 (1985)Google Scholar
  15. 15.
    Kurihara, M., Kondo, H.: Completion for multiple reduction orderings. J. Autom. Reason. 23(1), 25–42 (1999)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Lescanne, P.: REVE: a rewrite rule laboratory. In: Proc. 4th International Symposium on Theoretical Aspects of Computer Science. LNCS, vol. 247, pp. 482–483 (1987)Google Scholar
  17. 17.
    Marché, C.: Normalized rewriting: An unified view of Knuth–Bendix completion and Gröbner bases computation. In: Symbolic Rewriting Techniques. Progress in Computer Science and Applied Logic, vol. 15, pp. 193–208. Birkhäuser (1998)Google Scholar
  18. 18.
    McCune, W.: Experiments with discrimination-tree indexing and path indexing for term retrieval. J. Autom. Reason. 9(2), 147–167 (1992)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Métivier, Y.: About the rewriting systems produced by the Knuth–Bendix completion algorithm. Inform. Process. Lett. 16(1), 31–34 (1983)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Handbook of Automated Reasoning, pp. 371–443. Elsevier Science (2001)Google Scholar
  21. 21.
    Sato, H., Winkler, S., Kurihara, M., Middeldorp, A.: Multi-completion with termination tools (system description). In: Proc. 4th IJCAR. LNAI, vol. 5195, pp. 306–312 (2008)Google Scholar
  22. 22.
    Sato, H., Winkler, S., Kurihara, M., Middeldorp, A.: Constraint-based multi-completion procedures for term rewriting systems. IEICE Trans. Electron. E92-D(2), 220–234 (2009)Google Scholar
  23. 23.
    Sattler-Klein, A.: About changing the ordering during Knuth–Bendix completion. In: Proc. 11th STACS. LNCS, vol. 775, pp. 175–186 (1994)Google Scholar
  24. 24.
    Sekar, R., Ramakrishnan, I.V., Voronkov, A.: Term indexing. In: Handbook of Automated Reasoning, pp. 1853–1964. Elsevier Science (2001)Google Scholar
  25. 25.
    Steinbach, J., Kühler, U.: Check Your Ordering—Termination Proofs and Open Problems. Technical Report SR-90-25, Universität Kaiserslautern (1990)Google Scholar
  26. 26.
    Stump, A., Löchner, B.: Knuth–Bendix completion of theories of commuting group endomorphisms. Inform. Process. Lett. 98(5), 195–198 (2006)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Sutcliffe, G.: The TPTP problem library and associated infrastructure: the FOF and CNF parts, v3.5.0. J. Autom. Reason. 43(4), 337–362 (2009)MATHCrossRefGoogle Scholar
  28. 28.
    Voronkov, A.: The anatomy of Vampire. J. Autom. Reason. 15(2), 237–265 (1995)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Voronkov, A.: Algorithms, datastructures, and other issues in efficient automated deduction. In: Proc. 1st IJCAR. LNCS, vol. 2083, pp. 13–28 (2001)Google Scholar
  30. 30.
    Wehrman, I.: Knuth–Bendix completion with modern termination checking. Master’s thesis, Washington University in St. Louis, 2006. Technical report WUCSE-2006-45Google Scholar
  31. 31.
    Wehrman, I., Stump, A.: Mining propositional simplification proofs for small validating clauses. In: Proc. 3rd PDPAR. ENTCS, vol. 144, pp. 79–91 (2005)Google Scholar
  32. 32.
    Wehrman, I., Stump, A., Westbrook, E.M.: Slothrop: Knuth–Bendix completion with a modern termination checker. In: Proc. 17th RTA. LNCS, vol. 4098, pp. 287–296 (2006)Google Scholar
  33. 33.
    Winkler, F.: Reducing the complexity of the Knuth–Bendix completion-algorithm: a “unification” of different approaches. In: Proc. 2nd EUROCAL. LNCS, vol. 204, pp. 378–389 (1985)Google Scholar
  34. 34.
    Winkler, S., Middeldorp, A.: Termination tools in ordered completion. In: Proc. 5th IJCAR. LNAI, vol. 6173, pp. 518–532 (2010)Google Scholar
  35. 35.
    Winkler, S., Middeldorp, A.: AC completion with termination tools. In: Proc. 23rd CADE. LNAI, vol. 6803, pp. 492–498 (2011)Google Scholar
  36. 36.
    Winkler, S., Sato, H., Middeldorp, A., Kurihara, M.: Optimizing mkbTT (system description). In: Proc. 21st RTA. LIPIcs, vol. 6, pp. 373–384 (2010)Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Sarah Winkler
    • 1
  • Haruhiko Sato
    • 2
  • Aart Middeldorp
    • 1
  • Masahito Kurihara
    • 2
  1. 1.Institute of Computer ScienceUniversity of InnsbruckInnsbruckAustria
  2. 2.Graduate School of Information Science and TechnologyHokkaido UniversityHokkaidoJapan

Personalised recommendations