Journal of Automated Reasoning

, Volume 50, Issue 1, pp 99–117 | Cite as

Case Splitting in an Automatic Theorem Prover for Real-Valued Special Functions

Article

Abstract

Case splitting, with and without backtracking, is compared with straightforward ordered resolution. Both forms of splitting have been implemented for MetiTarski, an automatic theorem prover for real-valued special functions such as \(\exp\), ln , sin, cos and tan − 1. The experimental findings confirm the superiority of true backtracking over the simulation of backtracking through the introduction of new predicate symbols, and the superiority of both over straightforward resolution.

Keywords

Splitting Resolution theorem proving SPASS MetiTarski 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akbarpour, B., Paulson, L.: MetiTarski: An automatic theorem prover for real-valued special functions. J. Autom. Reason. 44(3), 175–205 (2010). doi:10.1007/s10817-009-9149-2 MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, chap. 2, pp. 19–99. Elsevier, Amsterdam (2001)Google Scholar
  3. 3.
    Denman, W., Akbarpour, B., Tahar, S., Zaki, M., Paulson, L.C.: Formal verification of analog designs using MetiTarski. In: Biere, A., Pixley, C. (eds.) Formal Methods in Computer Aided Design, pp. 93–100. IEEE, Piscataway (2009). doi:10.1109/FMCAD.2009.5351136 Google Scholar
  4. 4.
    Fietzke, A., Weidenbach, C.: Labelled splitting. Ann. Math. Artif. Intell. 55, 3–34 (2009). doi:10.1007/s10472-009-9150-9 MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Hurd, J.: Metis first order prover (2007). URL: http://gilith.com/software/metis/
  6. 6.
    McCune, W., Wos, L.: Otter: The CADE-13 competition incarnations. J. Autom. Reason. 18(2), 211–220 (1997). doi:10.1023/A:1005843632307 CrossRefGoogle Scholar
  7. 7.
    Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated resolution problems. J. Appl. Log. 7(1), 41–57 (2009). doi:10.1016/j.jal.2007.07.004 MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Mitrinović, D.S., Vasić, P.M.: Analytic Inequalities. Springer, New York (1970)MATHGoogle Scholar
  9. 9.
    Nivelle, H.: Splitting through new proposition symbols. In: Nieuwenhuis, R., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence, and Reasoning: 8th International Conference, LPAR, LNCS 2250, pp. 172–185. Springer, New York (2001). doi:10.1007/3-540-45653-8_12 CrossRefGoogle Scholar
  10. 10.
    Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, chap. 6, pp. 335–367. Elsevier, Amsterdam (2001)Google Scholar
  11. 11.
    Riazanov, A., Voronkov, A.: Splitting without backtracking. In: International Joint Conference on Artificial Intelligence (IJCAI-17), vol. 1, pp. 611–617 (2001). http://www.cs.man.ac.uk/~voronkov/papers/ijcai01.ps
  12. 12.
    Sutcliffe, G., Zimmer, J., Schulz, S.: TSTP data-exchange formats for automated theorem proving tools. In: Zhang, W., Sorge, V. (eds.) Distributed Constraint Problem Solving and Reasoning in Multi-Agent Systems, no. 112 in Frontiers in Artificial Intelligence and Applications, pp. 201–215. IOS Press, Amsterdam (2004)Google Scholar
  13. 13.
    Weidenbach, C.: SPASS - version 0.49. J. Autom. Reason. 18, 247–252 (1997). doi:10.1023/A:1005812220011 CrossRefGoogle Scholar
  14. 14.
    Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, chap. 27, pp. 1965–2013. Elsevier, Amsterdam (2001)Google Scholar
  15. 15.
    Wos, L., Robinson, G.A., Carson, D.F.: Efficiency and completeness of the set of support strategy in theorem proving. J. ACM 12(4), 536–541 (1965). doi:10.1145/321296.321302 MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Computer LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations