Journal of Automated Reasoning

, Volume 47, Issue 4, pp 369–398 | Cite as

Monotonicity Inference for Higher-Order Formulas

  • Jasmin Christian BlanchetteEmail author
  • Alexander Krauss


Formulas are often monotonic in the sense that satisfiability for a given domain of discourse entails satisfiability for all larger domains. Monotonicity is undecidable in general, but we devised three calculi that infer it in many cases for higher-order logic. The third calculus has been implemented in Isabelle’s model finder Nitpick, where it is used both to prune the search space and to soundly interpret infinite types with finite sets, leading to dramatic speed and precision improvements.


Higher-order logic Model finding Isabelle/HOL 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof, 2nd edn. Applied Logic, vol. 27. Springer (2002)Google Scholar
  2. 2.
    Berghofer, S., Wenzel, M.: Inductive datatypes in HOL—lessons learned in formal-logic engineering. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs ’99. LNCS, vol. 1690, pp. 19–36 (1999)Google Scholar
  3. 3.
    Blanchette, J.C., Krauss, A.: Monotonicity inference for higher-order formulas. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNAI, vol. 6173, pp. 91–106. Springer (2010)Google Scholar
  4. 4.
    Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order logic based on a relational model finder. In: Kaufmann, M., Paulson, L. (eds.) ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer (2010)Google Scholar
  5. 5.
    Claessen, K., Lillieström, A., Smallbone, N.: Sort it out with monotonicity: translating between many-sorted and unsorted first-order logic. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE-23. LNAI, vol. 6803, pp. 207–221. Springer (2011).
  6. 6.
    Claessen, K., Sörensson, N.: New techniques that improve MACE-style model finding. In: MODEL (2003)Google Scholar
  7. 7.
    Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving Environment for Higher Order Logic. Cambridge University Press (1993)Google Scholar
  8. 8.
    Harrison, J.: HOL Light: a tutorial introduction. In: FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer (1996)Google Scholar
  9. 9.
    Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press (2006)Google Scholar
  10. 10.
    Jackson, D., Shlyakhter, I., Sridharan, M.: A micromodularity mechanism. In: ESEC/FSE 2001, pp. 62–73 (2001)Google Scholar
  11. 11.
    Kuncak, V., Jackson, D.: Relational analysis of algebraic datatypes. In: Gall, H.C. (ed.) ESEC/FSE 2005 (2005)Google Scholar
  12. 12.
    McCune, W.: A Davis–Putnam program and its application to finite first-order model search: quasigroup existence problems. Technical report, ANL (1994)Google Scholar
  13. 13.
    Mitchell, J.C.: Foundations for Programming Languages. MIT Press (1996)Google Scholar
  14. 14.
    Momtahan, L.: Towards a small model theorem for data independent systems in Alloy. ENTCS 128(6), 37–52 (2005)Google Scholar
  15. 15.
    Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans. Program. Lang. Sys. 1(2), 245–257 (1979)CrossRefzbMATHGoogle Scholar
  16. 16.
    Nipkow, T.: Verifying a hotel key card system. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.), ICTAC 2006, LNCS, vol. 4281, pp. 1–14. Springer (2006)Google Scholar
  17. 17.
    Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order Logic, LNCS, vol. 2283. Springer (2002)Google Scholar
  18. 18.
    Pnueli, A., Rodeh, Y., Strichman, O., Siegel, M.: The small model property: how small can it be? Inf. Comput. 178(1), 279–293 (2002)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Mu noz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32 (2008)Google Scholar
  20. 20.
    Tinelli, C., Zarba, C.: Combining decision procedures for sorted theories. In: Alferes, J., Leite, J. (eds.) JELIA 2004. LNCS, vol. 3229, pp. 641–653. Springer (2004)Google Scholar
  21. 21.
    Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer (2007)Google Scholar
  22. 22.
    Walker, D.: Substructural type systems. In: Pierce B. (ed.) Advanced Topics in Types and Programming Languages, pp. 3–44. MIT Press (2005)Google Scholar
  23. 23.
    Weber, T.: SAT-based finite model generation for higher-order logic. Ph.D. thesis, Dept. of Informatics, T.U. München (2008)Google Scholar
  24. 24.
    Zhang, J., Zhang, H.: SEM: a system for enumerating models. In: Mellish, C.S. (ed.) IJCAI-95, vol. 1, pp. 298–303. Morgan Kaufmann (1995)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jasmin Christian Blanchette
    • 1
    Email author
  • Alexander Krauss
    • 1
  1. 1.Institut für InformatikTechnische Universität MünchenMunichGermany

Personalised recommendations