Advertisement

Journal of Automated Reasoning

, Volume 49, Issue 4, pp 493–550 | Cite as

Satisfiability Checking in Łukasiewicz Logic as Finite Constraint Satisfaction

  • Steven Schockaert
  • Jeroen Janssen
  • Dirk Vermeir
Article

Abstract

Although it is well-known that every satisfiable formula in Łukasiewicz’ infinite-valued logic \(\mathcal{L}_{\infty}\) can be satisfied in some finite-valued logic, practical methods for finding an appropriate number of truth degrees do currently not exist. Extending upon earlier results by Aguzzoli et al., which only take the total number of variable occurrences into account, we present a detailed analysis of what type of formulas require a large number of truth degrees to be satisfied. In particular, we reveal important links between this number of truth degrees and the dimension, and structure, of the cycle space of an associated bipartite graph. We furthermore propose an efficient, polynomial-time algorithm for establishing a strong upper bound on the required number of truth degrees, allowing us to check the satisfiability of sets of formulas in \(\mathcal{L}_{\infty}\), and more generally, sets of fuzzy clauses over Łukasiewicz logic formulas, by solving a small number of constraint satisfaction problems. In an experimental evaluation, we demonstrate the practical usefulness of this approach, comparing it with a state-of-the-art technique based on mixed integer programming.

Keywords

Fuzzy logic Satisfiability checking Łukasiewicz semantics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguzzoli, S.: An asymptotically tight bound on countermodels for Łukasiewicz logic. Int. J. Approx. Reason. 43, 76–89 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Aguzzoli, S., Ciabattoni, A.: Finiteness in infinite-valued Łukasiewicz logic. J. Logic Lang. Inf. 9, 5–29 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Aguzzoli, S., Gerla, B.: Finite-valued reductions of infinite-valued logics. Arch. Math. Log. 41, 361–399 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bobillo, F., Bou, F., Straccia, U.: On the failure of the finite model property in some fuzzy description logics. Fuzzy Sets Syst. 172(1), 1–12 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bobillo, F., Straccia, U.: Fuzzy description logics with general t-norms and datatypes. Fuzzy Sets Syst. 160(23), 3382–3402 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bollobás, B.: Modern Graph Theory. Springer (1998)Google Scholar
  7. 7.
    Hähnle, R.: Towards an efficient tableau proof procedure for multiple-valued logics. In: Börger, E., Kleine Büning, H., Richter, M., Schönfeld, W. (eds.) Selected Papers from Computer Science Logic, pp. 248–260. Springer-Verlag (1991)Google Scholar
  8. 8.
    Hähnle, R.: Many-valued logic and mixed integer programming. Ann. Math. Artif. Intell. 12, 231–264 (1994)zbMATHCrossRefGoogle Scholar
  9. 9.
    Hähnle, R.: Tutorial: Complexity of many-valued logics. IEEE International Symposium on Multiple-Valued Logic, pp. 137–148 (2001)Google Scholar
  10. 10.
    Hähnle, R., Escalada-Imaz, G.: Deduction in multivalued logics: a survey. Mathw. Soft Comput. 4(2), 69–97 (1997)zbMATHGoogle Scholar
  11. 11.
    Hájek, P.: Metamathematics of Fuzzy Logic, pp. 155–174. Kluwer Academic Publishers (1998)Google Scholar
  12. 12.
    Hoffman, A., Kruskal, J.: Integral boundary points of convex polyhedra. Ann. Math. Stud. 38, 223–246 (1956)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Jackson, D., Vaziri, M.: Finding bugs with a constraint solver. In: ISSTA ’00: Proceedings of the 2000 ACM SIGSOFT International Symposium on Software Testing and Analysis, pp. 14–25. ACM, New York (2000)Google Scholar
  14. 14.
    Janssen, J., Heymans, S., Vermeir, D., De Cock, M.: Compiling fuzzy answer set programs to fuzzy propositional theories. In: Proceedings of the 24th International Conference on Logic Programming, pp. 362–376 (2008)Google Scholar
  15. 15.
    Kautz, H., Selman, B.: Planning as satisfiability. In: Proceedings of the 10th European Conference on Artificial Intelligence, pp. 359–363 (1992)Google Scholar
  16. 16.
    Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: An o(m 2 n) algorithm for minimum cycle basis of graphs. Algorithmica 52, 333–349 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artif. Intell. 157(1–2), 115–137 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    McNaughton, R.: A theorem about infinite-valued sentential logic. J. Symb. Log. 16, 1–13 (1951)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Mitchell, D., Selman, B., Levesque, H.: Generating hard satisfiability problems. Artif. Intell. 81(1–2), 17–29 (1996)MathSciNetGoogle Scholar
  20. 20.
    Mundici, D.: Satisfiability in many-valued sentential logic is NP-complete. Theor. Comp. Sci. 52, 145–153 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Mundici, D., Olivetti, N.: Resolution and model building in the infinite-valued calculus of Łukasiewicz. Theor. Comp. Sci. 200, 335–366 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Olivetti, N.: Tableaux for Łukasiewicz infinite-valued logic. Stud. Log. 73(1), 81–111 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Pavelka, J.: On fuzzy logic. Zeitschr. F. Math. Logik Und Grundl. Der Math. 25, 45–52, 119–134, 447–464 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Pham, D., Thornton, J., Sattar, A.: Modelling and solving temporal reasoning as propositional satisfiability. Artif. Intell. 172(15), 1752–1782 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Schockaert, S., De Cock, M., Kerre, E.: Spatial reasoning in a fuzzy region connection calculus. Artif. Intell. 173, 258–298 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Schockaert, S., Janssen, J., Vermeir, D., Cock, M.: Finite satisfiability in infinite-valued Łukasiewicz logic. In: Proceedings of the 3rd International Conference on Scalable Uncertainty Management, pp. 240–254 (2009)Google Scholar
  27. 27.
    Smyth, B., McClave, P.: Similarity vs. diversity. In: ICCBR ’01: Proceedings of the 4th International Conference on Case-based Reasoning, pp. 347–361. Springer, London (2001)Google Scholar
  28. 28.
    Straccia, U., Bobillo, F.: Mixed integer programming, general concept inclusions and fuzzy description logics. Mathw. Soft Comput. 14(3), 247–259 (2007)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into SAT. In: Proceedings of the 12th International Conference on Principles and Practice of Constraint Programming, vol. 4204 of Lecture Notes in Computer Science, pp. 590–603 (2006)Google Scholar
  30. 30.
    Wagner, H.: A new resolution calculus for the infinite-valued propositional logic of Łukasiewicz. In: Proceedings of the International Workshop on First order Theorem Proving, pp. 234–243 (1998)Google Scholar
  31. 31.
    Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: portfolio-based algorithm selection for SAT. J. Artif. Intell. Res. 32(1), 565–606 (2008)zbMATHGoogle Scholar
  32. 32.
    Zhang, L., Malik, S.: The quest for efficient boolean satisfiability solvers. In: Proceedings of 14th International Conference on Computer Aided Verification, vol. 2404 of Lecture Notes in Computer Science, pp. 641–653 (2002)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Steven Schockaert
    • 1
  • Jeroen Janssen
    • 2
  • Dirk Vermeir
    • 2
  1. 1.Department of Applied Mathematics and Computer ScienceGhent UniversityGhentBelgium
  2. 2.Department of Computer ScienceVrije Universiteit BrusselBrusselBelgium

Personalised recommendations