Advertisement

Journal of Automated Reasoning

, Volume 49, Issue 2, pp 275–300 | Cite as

On Explicit Substitution with Names

  • Kristoffer H. RoseEmail author
  • Roel Bloo
  • Frédéric Lang
Article

Abstract

This paper recounts the origins of the λx family of calculi of explicit substitution with proper variable names, including the original result of preservation of strong β-normalization based on the use of synthetic reductions for garbage collection. We then discuss the properties of a variant of the calculus which is also confluent for “open” terms (with meta-variables), and verify that a version with garbage collection preserves strong β-normalization (as is the state of the art), and we summarize the relationship with other efforts on using names and garbage collection rules in explicit substitution.

Keywords

Explicit substitution Preservation of strong normalization Confluence Open terms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadi, M., Cardelli, L., Curien, P.L., Lévy, J.J.: Explicit substitutions. J. Funct. Program. 1(4), 375–416 (1991)CrossRefzbMATHGoogle Scholar
  2. 2.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press (1999)Google Scholar
  3. 3.
    Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics, revised edn. North-Holland (1984)Google Scholar
  4. 4.
    Benaissa, Z.E.A., Briaud, D., Lescanne, P., Rouyer-Degli, J.: λυ, a calculus of explicit substitutions which preserves strong normalisation. Rapport de Recherche 2477, INRIA, Lorraine, Technôpole de Nancy-Brabois, Campus Scientifique, 615 rue de Jardin Botanique, BP 101, F-54600 Villers lès Nancy. http://www.loria.fr/ lescanne/PUBLICATIONS/RR-2477.PS (1995)
  5. 5.
    Bezem, M., Klop, J.W., de Vrijer, R.: Term Rewriting Systems. Cambridge University Press, known as the “TeReSe” book (2003)Google Scholar
  6. 6.
    Bloo, R.: Preservation of Termination for Explicit Substitution. PhD thesis, Technische Universiteit Eindhoven, iPA Dissertation Series 1997-05 (1997)Google Scholar
  7. 7.
    Bloo, R., Geuvers, H.: Explicit substitution: on the edge of strong normalisation. Theor. Comp. Sci. 211(1–2), 375–395 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bloo, R., Rose, K.H.: Preservation of strong normalisation in named lambda calculi with explicit substitution and garbage collection. In: CSN ’95—Computing Science in the Netherlands, Koninklijke Jaarbeurs, pp. 62–72. Utrecht (1995)Google Scholar
  9. 9.
    Bonelli, E., Kesner, D., Ríos, A.: A de Bruijn notation for higher-order rewriting. In: RTA 2000—11th International Conference on Rewriting Techniques and Applications. Lecture Notes in Computer Science, pp. 62–79, no. 1833. Springer-Verlag, Norwick (2000)Google Scholar
  10. 10.
    de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation with application to the Church–Rosser theorem. Koninklijke Nederlandse Akademie van Wetenschappen, Series A, Mathematical Sciences 75:381–392, also chapter C.2 of (Nederpelt et al. 1994) (1972)Google Scholar
  11. 11.
    Church A.: The Calculi of Lambda-Conversion. Princeton University Press, Princeton, NJ (1941)Google Scholar
  12. 12.
    Church, A., Rosser, J.B.: Some properties of conversion. Trans. AMS 39, 472–482 (1935)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Curien, P.L.: An abstract framework for environment machines. Theor. Comp. Sci. 82, 389–402 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Curien, P.L., Hardin, T., Lévy, J.J.: Confluence properties of weak and strong calculi of explicit substitutions. J. ACM 43(2), 362–397 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Curry, H.B., Feys, R.: Combinatory Logic, vol. I. North-Holland (1958)Google Scholar
  16. 16.
    David, R., Guillaume, B.: A λ-calculus with explicit weakening and explicit substitution. Math. Struct. Comput. Sci. 11(1), 169–206 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Dershowitz, N.: Termination of rewriting. J. Symb. Comput. 3(1), 69–116. Corrigendum: 4(3), 409–410 (1987)Google Scholar
  18. 18.
    Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B., chap. 6, pp. 244–320. Elsevier (1990)Google Scholar
  19. 19.
    Di Cosmo, R., Kesner, D., Polonovski, E.: Proof nets and explicit substitutions. Math. Struct. Comput. Sci. 13(3), 409–450 (2003)CrossRefzbMATHGoogle Scholar
  20. 20.
    Fernández, M., Gabbay, M.J.: Nominal rewriting. Inf. Comput. 205(6), 917–965 (2007). doi: 10.1016/j.ic.2006.12.002 CrossRefzbMATHGoogle Scholar
  21. 21.
    Fernández, M., Mackie, I.: Closed reductions in the lambda-calculus. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL ’99—13th International Workshop on Computer Science Logic. Lecture Notes in Computer Science, vol. 1683, pp. 220–234. Springer-Verlag, Madrid (1999)Google Scholar
  22. 22.
    Fernández, M., Mackie, I., Sinot, F.R.: Lambda-calculus with director strings. Appl. Algebra Eng. Commun. Comput. 15(6), 393–437 (2005)CrossRefzbMATHGoogle Scholar
  23. 23.
    Hardin, T.: Confluence results for the pure strong categorical logic CCL; λ-calculi as subsystems of CCL. Theor. Comp. Sci. 65, 291–342 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kamareddine, F., Nederpelt, R.P.: On stepwise explicit substitution. Int. J. Found. Comput. Sci. 4(3), 197–240 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kesner, D.: Confluence properties of extensional and non-extensional λ-calculi with explicit substitution. Theor. Comp. Sci. 238(1–2), 183–220 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kesner, D.: The theory of explicit substitutions revisited. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007—Computer Science and Logic. Lecture Notes in Computer Science, vol. 4646, pp. 238–252. Springer-Verlag, Lausanne (2007)Google Scholar
  27. 27.
    Kesner, D.: A theory of explicit substitutions with safe and full composition. Logical Methods in Computer Science 5(3:1), 1–29 (2009). http://www.lmcs-online.org/ojs/viewarticle.php?id=480 MathSciNetGoogle Scholar
  28. 28.
    Kesner, D., Lengrand, S.: Resource operators for the λ-calculus. Inf. Comput. 205, 419–473 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Klop, J.W.: Term rewriting systems. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 2, chap. 1, pp. 1–116. Oxford University Press (1992)Google Scholar
  30. 30.
    Klop, J.W., van Oostrom, V., van Raamsdonk, F.: Combinatory reduction systems: introduction and survey. Theor. Comp. Sci. 121, 279–308 (1993)CrossRefzbMATHGoogle Scholar
  31. 31.
    Landin, P.J.: The mechanical evaluation of expressions. Comput. J. 6, 308–320 (1964)zbMATHGoogle Scholar
  32. 32.
    Lang, F., Rose, K.H.: Two equivalent calculi of explicit substitution with confluence on meta-terms and preservation of strong normalization (one with names and one first order). Presented at WESTAPP ’98—The First International Workshop on Explicit Substitutions: Theory and Applications to Programs and Proofs (Tsukuba, Japan) (1998). http://www.inrialpes.fr/vasy/people/Frederic.Lang/westapp98.ps.gz
  33. 33.
    Lescanne, P.: From λσ to λυ: a journey through calculi of explicit substitutions. In: POPL ’94—21st Annual ACM Symposium on Principles of Programming Languages, pp. 60–69. Portland, Oregon (1994)Google Scholar
  34. 34.
    Lins, R.D.: A new formula for the execution of catgorical combinators. In: CADE ’86—Conference on Automated Deduction. Lecture Notes in Computer Science, vol. 230, pp. 89–98. Springer-Verlag (1986)Google Scholar
  35. 35.
    Lins, R.D.: Partial categorical multi-combinators and Church–Rosser theorems. J. Univers. Comput. Sci. 10(7), 769–788 (2004)MathSciNetGoogle Scholar
  36. 36.
    Melliès, P.A.: Typed λ-calculi with explicit substitution may not terminate. In: Dezani-Ciancaglini, M., Plotkin, G.D. (eds.) TLCA ’95—Int. Conf. on Typed Lambda Calculus and Applications. Lecture Notes in Computer Science, pp. 328–334, no. 902. Springer-Verlag, Edinburgh (1995)Google Scholar
  37. 37.
    Mitschke, G.: Eine algebraische Behandlung von λ-K-Kalkül und Kombinatorischer Logik. PhD thesis, Rheinischen Friedrich-Wilhelms U., Bonn, Germany (1970)Google Scholar
  38. 38.
    van Raamsdonk, F.: Confluence and Normalization for Higher-order Rewriting. PhD thesis, Amsterdam University (1996)Google Scholar
  39. 39.
    Revesz, G.: Axioms for the theory of lambda-conversion. SIAM J. Comput. 14(2), 373–382 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Ritter, E.: Characterising explicit substitutions which preserve termination. In: Girard, J.Y. (ed.) TLCA ’99—Int. Conf. on Typed Lambda Calculus and Applications. Lecture Notes in Computer Science, pp. 325–339, no. 1581. Springer-Verlag, L’Aquila (1999)Google Scholar
  41. 41.
    Ritter, E., de Paiva, V.: On explicit substitution and names (extended abstract). In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP ’97—24th International Colloquium on Automata, Languages and Programming. Lecture Notes in Computer Science, vol. 1256, pp. 248–258. Springer-Verlag, Bologna (1997)Google Scholar
  42. 42.
    Rose, K.H.: Explicit cyclic substitutions. In: Rusinowitch, M., Rémy, J.L. (eds.) CTRS ’92—3rd International Workshop on Conditional Term Rewriting Systems. Lecture Notes in Computer Science, pp. 36–50, no. 656. Springer-Verlag, Pont-a-Mousson (1992)Google Scholar
  43. 43.
    Rose, K.H.: Explicit substitution – tutorial & survey. Lecture Series LS–96–3, BRICS, Dept. of Computer Science, University of Aarhus, Denmark (1996). ftp://ftp.brics.dk/LS/96/3/BRICS-LS-96-3.ps.gz
  44. 44.
    Rose, K.H.: Operational reduction models for functional programming languages. PhD thesis, DIKU, Univ. of Copenhagen (1996). http://www.diku.dk/OLD/publikationer/tekniske.rapporter/rapporter/96-01.pdf, DIKU report 96/1
  45. 45.
    Rose, K.H., Bloo, R., Lang, F.: On explicit substitution with names. IBM Research Report RC24909, IBM Thomas J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA (2009). http://domino.research.ibm.com/library/cyberdig.nsf/reportnumber/rc24909
  46. 46.
    Rosen, B.K.: Tree-manipulating systems and Church–Rosser theorems. J. ACM 20(1), 160–187 (1973)CrossRefzbMATHGoogle Scholar
  47. 47.
    Santo, J.E.: Delayed substitutions. In: Baader, F. (ed.) RTA 2007—18th International Conference on Term Rewriting and Applications. Lecture Notes in Computer Science, vol. 4533, pp. 169–183. Springer-Verlag, Paris (2007)Google Scholar
  48. 48.
    Urbanm, C.: How to prove false using the variable convention. Poster at the occasion of Prof. Mike D. Gordon’s 60th birthday (2008). Available from http://www4.in.tum.de/~urbanc/Publications/mike-poster-08.pdf
  49. 49.
    Urban, C.: Nominal techniques in Isabelle/HOL. J Autom Reasoning 40(4), 327–356 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Yokouchi, H., Hikita, T.: A rewriting system for categorical combinators with multiple arguments. SIAM J. Comput. 19(1), 78–97 (1990)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Kristoffer H. Rose
    • 1
    Email author
  • Roel Bloo
    • 2
  • Frédéric Lang
    • 3
  1. 1.IBM Thomas J. Watson Research CenterYorktown HeightsUSA
  2. 2.Eindhoven University of TechnologyEindhovenThe Netherlands
  3. 3.INRIA Grenoble Rhône-Alpes/LIGSaint-Ismier CedexFrance

Personalised recommendations