Journal of Automated Reasoning

, Volume 48, Issue 2, pp 219–262 | Cite as

Computing Knowledge in Security Protocols Under Convergent Equational Theories

  • Ştefan Ciobâcă
  • Stéphanie Delaune
  • Steve Kremer
Article

Abstract

The analysis of security protocols requires reasoning about the knowledge an attacker acquires by eavesdropping on network traffic. In formal approaches, the messages exchanged over the network are modelled by a term algebra equipped with an equational theory axiomatising the properties of the cryptographic primitives (e.g. encryption, signature). In this context, two classical notions of knowledge, deducibility and indistinguishability, yield corresponding decision problems. We propose a procedure for both problems under arbitrary convergent equational theories. Since the underlying problems are undecidable we cannot guarantee termination. Nevertheless, our procedure terminates on a wide range of equational theories. In particular, we obtain a new decidability result for a theory we encountered when studying electronic voting protocols. We also provide a prototype implementation.

Keywords

Formal methods Security protocols Static equivalence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational theories. Theor. Comp. Sci. 387(1–2), 2–32 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: Proc. 28th ACM Symposium on Principles of Programming Languages (POPL’01). ACM (2001)Google Scholar
  3. 3.
    Anantharaman, S., Narendran, P., Rusinowitch, M.: Intruders with caps. In: Proc. 18th International Conference on Term Rewriting and Applications (RTA’07). LNCS, vol. 4533. Springer (2007)Google Scholar
  4. 4.
    Armando, A., et al.: The AVISPA Tool for the automated validation of internet security protocols and applications. In: Proc. 17th Int. Conference on Computer Aided Verification (CAV’05). LNCS, vol. 3576, pp. 281–285. Springer (2005)Google Scholar
  5. 5.
    Arnaud, M., Cortier, V., Delaune, S.: Combining algorithms for deciding knowledge in security protocols. In: Wolter, F. (ed.) Proceedings of the 6th International Symposium on Frontiers of Combining Systems (FroCoS’07). Lecture Notes in Artificial Intelligence, vol. 4720, pp. 103–117. Springer, Liverpool, UK (2007)Google Scholar
  6. 6.
    Backes, M., Hritcu, C., Maffei, M.: Automated verification of remote electronic voting protocols in the applied pi-calculus. In: Proc. 21st IEEE Computer Security Foundations Symposium (CSF’08) (2008)Google Scholar
  7. 7.
    Backes, M., Maffei, M., Unruh, D.: Zero-knowledge in the applied pi-calculus and automated verification of the direct anonymous attestation protocol. In: Proc. IEEE Symposium on Security and Privacy (S&P’08). IEEE Computer Society Press (2008)Google Scholar
  8. 8.
    Baudet, M.: Deciding security of protocols against off-line guessing attacks. In: 12th ACM Conference on Computer and Communications Security (CCS’05) (2005)Google Scholar
  9. 9.
    Baudet, M.: YAPA (Yet Another Protocol Analyzer). http://www.lsv.ens-cachan.fr/~baudet/yapa/index.html (2008)
  10. 10.
    Baudet, M., Cortier, V., Delaune, S.: YAPA: a generic tool for computing intruder knowledge. In: Proc. 20th International Conference on Rewriting Techniques and Applications (RTA’09), Lecture Notes in Computer Science, vol. 5595, pp. 148–163. Springer, Brasília, Brazil (2009)Google Scholar
  11. 11.
    Berrima, M., Ben Rajeb, N., Cortier, V.: Deciding knowledge in security protocols under some e-voting theories. Research Report RR-6903, INRIA (2009)Google Scholar
  12. 12.
    Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In: 14th Computer Security Foundations Workshop (CSFW’01), pp. 82–96. IEEE Computer Society Press (2001)Google Scholar
  13. 13.
    Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equivalences for security protocols. In: Symposium on Logic in Computer Science, pp. 331–340. IEEE Computer Society Press (2005)Google Scholar
  14. 14.
    Chevalier, Y.: Résolution de problèmes d’ accessibilité pour la compilation et la validation de protocoles cryptographiques. Ph.D. thesis, Université Henri Poincaré, Nancy, France (2003)Google Scholar
  15. 15.
    Chevalier, Y., Kourjieh, M.: Key substitution in the symbolic analysis of cryptographic protocols. In: Proc. 27th International Conference on Foundations of Software Technology and Theoretical Computer Science (FST&TCS’07), pp. 121–132 (2007)Google Scholar
  16. 16.
    Ciobâcă, Ş.: KiSs. http://www.lsv.ens-cachan.fr/~ciobaca/kiss (2009)
  17. 17.
    Ciobâcă, Ş., Delaune, S., Kremer, S.: Computing knowledge in security protocols under convergent equational theories. In: Schmidt, R. (ed.) Proceedings of the 22nd International Conference on Automated Deduction (CADE’09). Lecture Notes in Artificial Intelligence, pp. 355–370, Springer, Montreal, Canada (2009)CrossRefGoogle Scholar
  18. 18.
    Corin, R., Doumen, J., Etalle, S.: Analysing password protocol security against off-line dictionary attacks. In: Proc. 2nd International Workshop on Security Issues with Petri Nets and Other Computational Models (WISP’04), ENTCS (2004)Google Scholar
  19. 19.
    Cortier, V., Delaune, S.: Deciding knowledge in security protocols for monoidal equational theories. In: Proc. 14th Int. Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’07). LNAI. Springer (2007)Google Scholar
  20. 20.
    Cortier, V., Delaune, S., Lafourcade, P.: A survey of algebraic properties used in cryptographic protocols. J. Comput. Secur. 14(1), 1–43 (2006)Google Scholar
  21. 21.
    Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic voting protocols. J. Comput. Secur. 17(4), 435–487 (2009)Google Scholar
  22. 22.
    Kremer, S., Ryan, M.D.: Analysis of an electronic voting protocol in the applied pi-calculus. In: 14th European Symposium on Programming (ESOP’05). LNCS, vol. 3444, pp. 186–200. Springer (2005)Google Scholar
  23. 23.
    Lafourcade, P., Lugiez, D., Treinen, R.: Intruder deduction for the equational theory of Abelian groups with distributive encryption. Inf. Comput. 205(4), 581–623 (2007)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Millen, J., Shmatikov, V.: Constraint solving for bounded-process cryptographic protocol analysis. In: Proc. 8th ACM Conference on Computer and Communications Security (CCS’01) (2001)Google Scholar
  25. 25.
    Okamoto, T.: Receipt-free electronic voting schemes for large scale elections. In: Proc. 5th Int. Security Protocols Workshop, LNCS, vol. 1361. Springer (1997)Google Scholar
  26. 26.
    Rusinowitch, M., Turuani, M.: Protocol insecurity with finite number of sessions and composed keys is NP-complete. Theor. Comp. Sci. 299, 451–475 (2003)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Ştefan Ciobâcă
    • 1
  • Stéphanie Delaune
    • 1
  • Steve Kremer
    • 1
  1. 1.LSV, ENS Cachan & CNRS & INRIA Saclay Île-de-FranceCachanFrance

Personalised recommendations