Journal of Automated Reasoning

, Volume 46, Issue 2, pp 205–221 | Cite as

A Polynomial Model for Logics with a Prime Power Number of Truth Values

  • Antonio Hernando
  • Eugenio Roanes-Lozano
  • Luis M. Laita


This paper is concerned with a polynomial model (residue class ring) for a given q-valued propositional logic (where q is a power of a prime integer). This model allows to transfer logic problems into algebraic terms, resulting in an immediate computational approach to Knowledge Based Systems based on multi-valued logics. By means of this new approach, we have extended an already existent algebraic model to logics with a prime power number of truth values, while also getting more straightforward proofs and a more direct enunciation of the central theorem of this model.


Multivalued logics Groebner bases Symbolic computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, W.W., Loustaunau, P.: An Introduction to Gröbner Bases. American Mathematical Society, Providence, RI (1994)Google Scholar
  2. 2.
    Alonso, J.A., Briales, E.: Lógicas polivalentes y bases de Gröbner. In: Martin, C. (ed.) Actas del V Congreso de Lenguajes Naturales y Lenguajes Formales, pp. 307–315. University of Seville, Seville (1995)Google Scholar
  3. 3.
    Becker, T., Weisspfenning, V.: Gröbner Bases. A Computational Approach to Commutative Algebra. Graduate Studies in Mathematics-Springer, Berlin (1993)Google Scholar
  4. 4.
    Buchberger, B.: An Algorithm for Finding a Basis for the Residue Class Ring of a Zero-Dimensional Polynomial Ideal. Ph.D. thesis, Math. Institute—University of Innsbruck (1965) (in German)Google Scholar
  5. 5.
    Buchberger, B.: Applications of Gröbner bases in non-linear computational geometry. In: Rice, J.R. (ed.) Mathematical Aspects of Scientific Software. IMA, vol. 14, pp. 60–88. Springer, New York (1988)Google Scholar
  6. 6.
    Capaini, A., Niesi, G.: CoCoA User’s Manual. Dept. Mathematics, Univ. of Genova (1996)Google Scholar
  7. 7.
    Chazarain, J., Riscos, A., Alonso, J.A., Briales, E.: Multivalued logic and Gröbner bases with applications to modal logic. J. Symb. Comput. 11, 181–194 (1991)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer, New York (1992)Google Scholar
  9. 9.
    Garcia-Remensal, M., Maojo, V., Laita, L.M., Roanes-Lozano, E., Crespo, J.: An Algebraic Approach to Detect Logical Inconsistencies in Medical Appropriateness Criteria. In: Engineering in Medicine and Biology Society, (EMBS 2007), 29th Annual International Conference of the IEEE, pp. 5148–5151. Lyon (2007)Google Scholar
  10. 10.
    Hsiang, J.: Refutational theorem proving using term-rewriting systems. Artif. Intell. 25, 255–300 (1985)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Kapur, D., Narendran, P.: An equational approach to theorem proving in first-order predicate calculus. In: Proceedings of the 9th International Joint Conference on Artificial Intelligence (IJCAI-85), vol. 2, pp. 1146–1153 (1985)Google Scholar
  12. 12.
    Laita, L.M., de Ledesma, L., Roanes-Lozano, E., Roanes-Macías, E.: An interpretation of the propositional Boolean algebra as a k-algebra. Effective calculus. In: Campbell, J., Calmet, J. (eds.) Proceedings of the Second International Workshop/Conference on Artificial Intelligence and Symbolic Mathematical Computing (AISMC-2). Lecture Notes in Computer Science, vol. 958, pp. 255–263. Springer (1995)Google Scholar
  13. 13.
    Laita, L.M., Roanes-Lozano, E., Alonso, J.A., Briales, E.: Algebraic verification of KBSs. In: Proceedings of the 13th National Conference on Artificial Intelligence (AAAI-96) (Workshop on Verification and Validation of Knowledge Based Systems and Subsystems), pp. 122–129. Portland, USA (1996)Google Scholar
  14. 14.
    Laita, L.M., Roanes-Lozano, E.: A computer algebraic method for verification and deduction in KBSs: theory and implementation. In: Proceedings of the 12th European Conference on Artificial Intelligence (ECAI-96), pp. 5–10. Budapest University, Hungary (1996)Google Scholar
  15. 15.
    Laita, L.M., Roanes-Lozano, E., de Ledesma, L., Alonso, J.A.: A computer algebra approach to verification and deduction in manyvalued knowledge systems. Soft Comput. 3(1), 7–19 (1999)CrossRefGoogle Scholar
  16. 16.
    Laita, L.M., Roanes-Lozano, E., Maojo, V., de Ledesma, L., Laita, L.: An expert system for managing medical appropriateness criteria based on computer algebra techniques. Comput. Math. Appl. 51/5, 473–481 (2000)Google Scholar
  17. 17.
    Lourdes Jimenez, M., Santamaría, J.M., Barchino, R., Laita, L., Laita, L.M., González, L.A., Asenjo, A.: Knowledge representation for diagnosis of care problems through an expert system: model of the auto-care deficit situations. Expert Syst. Appl. 34, 2847–2857 (2008)CrossRefGoogle Scholar
  18. 18.
    Pérez-Carretero, C., Laita, L.M., Roanes-Lozano, E., Lázaro, L., González-Cajal, J., Laita, L.: A logic and computer algebra-based expert system for diagnosis of anorexia. Math. Comput. Simul. 58, 183–202 (2002)CrossRefMATHGoogle Scholar
  19. 19.
    Perkinson, D.: CoCoA 4.0 Online Help (electronic file acompanying CoCoA v.4.0) (2000)Google Scholar
  20. 20.
    Roanes-Lozano, E., Laita, L.M., Roanes-Macías, E.: Maple V in A.I.: the boolean algebra associated to a KBS. Comput. Algebra Ned. Nieuwsbrief 14, 65–70 (1995)Google Scholar
  21. 21.
    Roanes-Lozano, E., Laita, L.M.: Verification of knowledge based systems with commutative algebra and computer algebra techniques. In: Proceedings of the 1st International Conference on Applications of Computer Algebra (IMACS). New Mexico University, USA (electronic book) (1995)Google Scholar
  22. 22.
    Roanes-Lozano, E., Laita, L.M.: Verification of knowledge based systems: an algebraic interpretation. In: Proceedings of the International Conference on Artificial Intelligence (IJCAI-95) (Workshop on Verification and Validation of Knowledge Based Systems), pp. 91–95. MCGill University, Montreal, Canada (1995)Google Scholar
  23. 23.
    Roanes-Lozano, E., Laita, L.M., Roanes-Macías, E.: An inference engine for propositional two-valued logic based on the radical membership problem. In: Campbell, J., Calmet, J., Pfalzgraf, J. (eds.) Proceedings of the Third International Workshop/Conference on Artificial Intelligence and Symbolic Mathematical Computing (AISMC-3). Lecture Notes in Computer Science, vol. 1138, , pp. 71–86. Springer, Berlin (1996)Google Scholar
  24. 24.
    Roanes Lozano, E., Laita, L.M., Roanes-Macías, E.: A polynomial model for multivalued logics with a touch of algebraic geometry and computer algebra. Math. Comput. Simul. 45/1, 83–99 (1998)CrossRefGoogle Scholar
  25. 25.
    Roanes-Lozano, E., Hernando, A., Laita, L.M., Roanes-Macías, E.: A Groebner bases-based approach to backward reasoning in rule based expert systems. Ann. Math. Artif. Intell. doi:10.1007/s10472-009-9147-4
  26. 26.
    Rodríguez-Solano, C., Laita, L.M., Roanes Lozano, E., López Corral, L., Laita, L.: A computational system for diagnosis of depressive situations. Expert Syst. Appl. 31, 47–55 (2006)CrossRefGoogle Scholar
  27. 27.
    Winkler, F.: Polynomial Algorithms in Computer Algebra. Springer, Vienna (1996)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Antonio Hernando
    • 1
  • Eugenio Roanes-Lozano
    • 2
  • Luis M. Laita
    • 3
  1. 1.Departamento de Sistemas Inteligentes Aplicados, Escuela Universitaria de InformáticaUniversidad Politécnica de MadridMadridSpain
  2. 2.Departamento de Álgebra, Facultad de EducaciónUniversidad Complutense de MadridMadridSpain
  3. 3.Departamento de Inteligencia Artificial, Facultad de InformáticaUniversidad Politécnica de MadridMadridSpain

Personalised recommendations