Advertisement

Journal of Automated Reasoning

, Volume 45, Issue 2, pp 91–129 | Cite as

Automata-Based Axiom Pinpointing

  • Franz Baader
  • Rafael Peñaloza
Article

Abstract

Axiom pinpointing has been introduced in description logics (DL) to help the user understand the reasons why consequences hold by computing minimal subsets of the knowledge base that have the consequence in question (MinA). Most of the pinpointing algorithms described in the DL literature are obtained as extensions of tableau-based reasoning algorithms for computing consequences from DL knowledge bases. In this paper, we show that automata-based algorithms for reasoning in DLs and other logics can also be extended to pinpointing algorithms. The idea is that the tree automaton constructed by the automata-based approach can be transformed into a weighted tree automaton whose so-called behaviour yields a pinpointing formula, i.e., a monotone Boolean formula whose minimal valuations correspond to the MinAs. We also develop an approach for computing the behaviour of a given weighted tree automaton. We use the DL \(\mathcal{SI}\) as well as Linear Temporal Logic (LTL) to illustrate our new pinpointing approach.

Keywords

Axiom-pinpointing Automated reasoning Weighted automata Explanation Description logics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F.: Augmenting concept languages by transitive closure of roles: an alternative to terminological cycles. In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI’91) (1991)Google Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  3. 3.
    Baader, F., Hladik, J., Peñaloza, R.: Automata can show PSPACE results for description logics. Inf. Comput. 206(9–10), 1045–1056 (2008)zbMATHCrossRefGoogle Scholar
  4. 4.
    Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge representation formalisms. J. Autom. Reason. 14, 149–180 (1995)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. In: Proc. of the Int. Conf. on Analytic Tableaux and Related Methods (TABLEAUX 2007). Lecture Notes in Artificial Intelligence, vol. 4548, pp. 11–27. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Baader, F., Peñaloza, R.: Automata-based axiom pinpointing. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2008). Lecture Notes in Artificial Intelligence, vol. 5195, pp. 226–241. Springer, Heidelberg (2008)Google Scholar
  7. 7.
    Baader, F., Peñaloza, R.: Blocking and pinpointing in forest tableaux. LTCS-Report LTCS-08-02, Chair for Automata Theory. Institute for Theoretical Computer Science, Dresden University of Technology, Germany. http://lat.inf.tu-dresden.de/research/reports.html (2008)
  8. 8.
    Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. J. Log. Comput. 20, 5–34 (2010)zbMATHCrossRefGoogle Scholar
  9. 9.
    Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Stud. Log. 69, 5–40 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpointing in the description logic \(\mathcal{EL}^+\). In: Proc. of the International Conference on Representing and Sharing Knowledge Using SNOMED (KR-MED’08), Phoenix, Arizona (2008)Google Scholar
  11. 11.
    Baader, F., Tobies, S.: The inverse method implements the automata approach for modal satisfiability. In: Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2001). Lecture Notes in Artificial Intelligence, vol. 2083, pp. 92–106. Springer, Heidelberg (2001)Google Scholar
  12. 12.
    Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge (2008)zbMATHGoogle Scholar
  13. 13.
    Calvanese, D., De Giacomo, G., Lenzerini, M.: Reasoning in expressive description logics with fixpoints based on automata on infinite trees. In: Proc. of the 16th Int. Joint Conf. on Artificial Intelligence (IJCAI’99), pp. 84–89. Morgan Kaufmann, San Mateo (1999)Google Scholar
  14. 14.
    Calvanese, D., De Giacomo, G., Lenzerini, M.: 2ATAs make DLs easy. In: Proc. of the 2002 Description Logic Workshop (DL 2002). CEUR Electronic Workshop Proceedings, pp. 107–118. http://ceur-ws.org/Vol-53/ (2002)
  15. 15.
    Droste, M., Kuich, W., Rahonis, G.: Multi-valued MSO logics over words and trees. Fundam. Inform. 84(3, 4), 305–327 (2008)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Droste, M., Rahonis, G.: Weighted automata and weighted logics on infinite words. In: Ibarra, O.H., Dang, Z. (eds.) Developments in Language Theory. Lecture Notes in Computer Science, vol. 4036, pp. 49–58. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness. In: Proc. of the 7th ACM SIGACT-SIGPLAN Symp. on Principles of Programming Languages (POPL’80), pp. 163–173 (1980)Google Scholar
  18. 18.
    Grätzer, G.: General Lattice Theory, 2nd edn. Birkhäuser, Cambridge (1998)zbMATHGoogle Scholar
  19. 19.
    Haarslev, V., Möller, R.: RACER system description. In: Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2001). Lecture Notes in Artificial Intelligence, vol. 2083, pp. 701–705. Springer, Heidelberg (2001)Google Scholar
  20. 20.
    Horrocks, I.: Using an expressive description logic: FaCT or fiction? In: Proc. of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’98), pp. 636–647 (1998)Google Scholar
  21. 21.
    Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: the making of a web ontology language. JWS 1(1), 7–26 (2003)Google Scholar
  22. 22.
    Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL DL entailments. In: Proc. of the 6th International Semantic Web Conference and 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea. Lecture Notes in Computer Science, vol. 4825, pp. 267–280. Springer, Heidelberg (2007)Google Scholar
  23. 23.
    Kupferman, O., Lustig, Y.: Lattice automata. In: Cook, B., Podelski, A., (eds.) 8th International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI’07). Lecture Notes in Computer Science, vol. 4349, pp. 199–213. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Kupferman, O., Vardi, M.: Safraless decision procedures. In: Proc. of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS05), pp. 531–542. IEEE Computer Society (2005)Google Scholar
  25. 25.
    Lee, K., Meyer, T., Pan, J.Z.: Computing maximally satisfiable terminologies for the description logic \(\mathcal{ALC}\) with GCIs. In: Proc. of the 2006 Description Logic Workshop (DL 2006). CEUR Electronic Workshop Proceedings, vol. 189 (2006)Google Scholar
  26. 26.
    Lutz, C., Sattler, U.: The complexity of reasoning with Boolean modal logic. In: Wolter, F., Wansing, H., de Rijke, M., Zakharyaschev, M. (eds.) Advances in Modal Logic, vol. 3, pp. 329–348. CSLI, Stanford (2001)Google Scholar
  27. 27.
    Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Ellis, A., Hagino, T. (eds.) Proc. of the 14th International Conference on World Wide Web (WWW’05), pp. 633–640. ACM, New York (2005)CrossRefGoogle Scholar
  28. 28.
    Pnueli, A.: The temporal logic of programs. In: Proc. of the 18th Annual Symp. on the Foundations of Computer Science (FOCS’77), pp. 46–57 (1977)Google Scholar
  29. 29.
    Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. of the 16th Annual ACM Symp. on Principles of Programming Languages (POPL’89), pp. 319–327. ACM, New York (1989)Google Scholar
  30. 30.
    Rabin, M.O.: Weakly definable relations and special automata. In: Bar-Hillel, Y. (ed.) Proc. of Symp. on Mathematical Logic and Foundations of Set Theory, pp. 1–23. North-Holland Publ., Amsterdam (1970)Google Scholar
  31. 31.
    Rahonis, G.: Weighted Muller tree automata and weighted logics. J. Autom. Lang. Comb. 12(4), 455–483 (2007)zbMATHMathSciNetGoogle Scholar
  32. 32.
    Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Schlobach, S.: Diagnosing terminologies. In: Veloso, M.M., Kambhampati, S. (eds.) Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005), pp. 670–675. AAAI Press/The MIT Press, Menlo Park (2005)Google Scholar
  34. 34.
    Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description logic terminologies. In: Gottlob, G., Walsh, T. (eds.) Proc. of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI 2003), Acapulco, Mexico, pp. 355–362. Morgan Kaufmann, Los Altos (2003)Google Scholar
  35. 35.
    Schlobach, S., Huang, Z., Cornet, R., Harmelen, F.: Debugging incoherent terminologies. J. Autom. Reason. 39(3), 317–349 (2007)zbMATHCrossRefGoogle Scholar
  36. 36.
    Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Artif. Intell. 48(1), 1–26 (1991)zbMATHCrossRefGoogle Scholar
  37. 37.
    Seidl, H.: Finite tree automata with cost functions. Theor. Comput. Sci. 126(1), 113–142 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Sirin, E., Parsia, B.: Pellet: an OWL DL reasoner. In: Proc. of the 2004 Description Logic Workshop (DL 2004), pp. 212–213 (2004)Google Scholar
  39. 39.
    Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math. 5, 285–309 (1955)zbMATHMathSciNetGoogle Scholar
  40. 40.
    Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of programs. In: Proc. of the 16th ACM SIGACT Symp. on Theory of Computing (STOC’84), pp. 446–455 (1984)Google Scholar
  41. 41.
    Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of programs. A preliminary version appeared in Proc. of the 16th ACM SIGACT symp. on theory of computing (STOC’84). J. Comput. Syst. Sci. 32, 183–221 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Wolper, P., Vardi, M.Y., Prasad Sistla, A.: Reasoning about infinite computation paths. In: Proc. of the 24th Annual Symposium of Foundations of Computer Science (SFCS’83), pp. 185–194. IEEE Computer Society, Washington (1983)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Theoretical Computer ScienceTU DresdenGermany

Personalised recommendations