Advertisement

Journal of Automated Reasoning

, Volume 45, Issue 3, pp 213–241 | Cite as

Visually Dynamic Presentation of Proofs in Plane Geometry

Part 1. Basic Features and the Manual Input Method
  • Zheng Ye
  • Shang-Ching Chou
  • Xiao-Shan Gao
Article

Abstract

With dynamic mediums such as computer displays, we propose a new kind of visually dynamic presentation of proofs in plane geometry. In a single diagram for the proof, when the proof text goes on step by step with mouse clicks, the related geometry elements in the diagram are added, animated, or deleted dynamically with various visually dynamic effects. It solves not only the problem of identifying geometry elements in the proof text with those in the diagram, but also makes the proof more vividly visualized and intuitive. Our ongoing developing system “Java Geometry Expert” (JGEX) uses two methods to create such visually dynamic presentations: the manual input method and the automatic method. In this first part of the series of our work, we propose the main features of our visually dynamic presentation of proofs and present the manual input method to create such presentations. The manual input method mainly uses mouse clicks to create the dynamic geometry diagram and the proof text.

Keywords

Geometry theorem proving Visually dynamic presentation of proof Dynamic geometry Unordered geometry Gelernter Java Geometry Expert Morley’s theorem Feuerbach’s theorem Pythagorean theorem Pedal triangle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nelsen, R.B.: Proofs without Words: Exercises in Visual Thinking (Classroom Resource Material) (1993)Google Scholar
  2. 2.
    Nelsen, R.B.: Proofs without Words II: more Exercises in Visual Thinking (Classroom Resource Material), by Roger B. Nelsen (2001)Google Scholar
  3. 3.
    Alsina, C., Nelsen, R.B.: [C] Math Made Visual: Creating Images For Understanding Mathematics. The Mathematical Association of America, New York (2006)Google Scholar
  4. 4.
    Cut-The-Knot: Geometry articles, theorems, problems. http://www.cut-the-knot.org/geometry.shtml (2009)
  5. 5.
    Cut-The-Knot: Pythagorean theorem. http://www.cut-the-knot.org/pythagoras/index.shtml (2009)
  6. 6.
    Gao, X.S., Zhang, J.Z., Chou, S.C.: Geometry Expert. Nine Chapters Pub. (in Chinese) (1998)Google Scholar
  7. 7.
    Chou, S.C., Gao, X.S., Zhang, J.Z.: An introduction to geometry expert. In: McRobbie, M.A., Slaney, J.K. (eds.) Proc. CADE-13, pp. 235–239. Springer, New York (1996)Google Scholar
  8. 8.
    Gao, X.S.: Building dynamic mathematical models with geometry expert, III. A geometry deductive database. In: Yang, W., Wang, D. (eds.) Proc. ASCM99. ATCM, Chadstone Centre (1999)Google Scholar
  9. 9.
    Gao, X.S., Lin, Q.: MMP/Geometer—a software package for automated geometry reasoning. In: Winkler, F. (ed.) Automated Deduction in Geometry, pp. 44–66 (2004)Google Scholar
  10. 10.
    Chou, S.C., Gao, X.S., Ye, Z.: Java geometry expert server: http://woody.cs.wichita.edu (2009) (One can run the most part of JGEX with a browser.)
  11. 11.
    Les Editions du Kangourou: Le théorème de Tháles. http://www.mathkang.org/swf/thales2.html (2009)
  12. 12.
    Chou, S.C., Gao, X.S., Zhang, J.Z.: Machine Proofs in Geometry. World Scientific, Singapore (1994)zbMATHGoogle Scholar
  13. 13.
    Sktektee, S., Jackiw, N., Chanan, S.: Geometer’s Sketchpad Verison 4.0, Reference Manual. Key Curriculum, Emeryville (2001)Google Scholar
  14. 14.
    Laborde, J.M., et al.: Cabri II Plus (2000)Google Scholar
  15. 15.
    Kortenkamp, U., Richter-Gebert, J.: User Manual for the Interactive Geometry Software Cinderella. Springer, New York (2000)zbMATHGoogle Scholar
  16. 16.
    Chou, S.C.: Mechanical Geometry Theorem Proving. D. Reidel, Dordrecht (1988)zbMATHGoogle Scholar
  17. 17.
    Taylor, K.B.: Three circles with collinear centres, solution of advanced problem 3887. Am. Math. Mon. 90, 486–487 (1983)CrossRefGoogle Scholar
  18. 18.
    Penrose, R.: Shadows of the Mind. Oxford University Press, Oxford (1994)Google Scholar
  19. 19.
    Chou, S.C., Gao, X.S., Ye, Z.: Java geometry expert. In: Proceedings of 10th Asian Technology Conference in Mathematics, pp. 78–84 (2005)Google Scholar
  20. 20.
    Chou, S.C., Gao, X.S.: A Class of Geometry Statments of Constructive Type and Geometry Theorem Proving, TR-89-37. Department of Computer Sciences, University of Texas at Austin, 32 p., November (1989)Google Scholar
  21. 21.
    Adler, C.F.: Modern Geometry. McGraw-Hill Book, Sydney (1958)Google Scholar
  22. 22.
    Coxeter, H.S.M., Greitzer, S.L.: Geometry Revisited, (New Mathematical Library). The Mathematical Association of America, New York (1975)Google Scholar
  23. 23.
    Hadamard, J.: Lecons de Geometrie Elementaire, I. Paris (1931)Google Scholar
  24. 24.
    Wu, W.T.: On the decision problem and the mechanization of theorem in elementary geometry. Scientia Sinica 21, 159–172 (1978); Automated theorem proving: after 25 years. A.M.S., Contemp. Math. 29, 213–234 (1984)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Wu, W.T.: Basic Principles of Mechanical Theorem Proving in Geometries. Press, Beijing (in Chinese) (1984). (English Version, Springer-Verlag (1993))Google Scholar
  26. 26.
    Kapur, D.: Geometry theorem proving using Hilbert’s Nullstellensatz. In: Proc. of SYMSAC’86, pp. 202–208. Waterloo (1986)Google Scholar
  27. 27.
    Chou, S.C., Schelter, W.F.: Proving geometry theorem with rewrite rules. J. Autom. Reason. 4, 253–273 (1986)CrossRefGoogle Scholar
  28. 28.
    Kutzler, B., Stifter, S.: Automated geometry theorem proving using Buchberger’s algorithm. In: Proc. of SYMSAC’86, pp. 209–214. Waterloo (1986)Google Scholar
  29. 29.
    Gelernter, H., Hanson, J.R., Loveland, D.W.: Empirical explorations of the geometry-theorem proving machine. In: Proc. West. Joint Computer Conf., pp. 143–147 (1960)Google Scholar
  30. 30.
    Gelernter, H.: Realization of a geometry-theorem proving machine, In: Feigenbaum, E.A., Feldman, J. (eds.) Computers and Thought, pp. 134–152. Mcgraw Hill, London (1963)Google Scholar
  31. 31.
    Nevins, A.J.: Plane geometry theorem proving using forward chaining. Artif. Intell. 6(1), 1–23 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Coelho, H., Pereira, L.M.: Automated reasoning in geometry theorem proving with prolog. J. Autom. Reason. 2(4), 329–390 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Hilbert, D.: Foundations of Geometry, the first edition (in Germany) was published in 1899. Open Court, La Salla (1971)Google Scholar
  34. 34.
    Chou, S.C., Gao, X.S., Zhang, J.Z.: Automated generation of of readable proofs with geometric invariants, II. Proving theorems with full-angles. J. Autom. Reason. 17, 349–370 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Chou, S.C., Gao, X.S., Zhang, J.Z.: A collection of 110 geometry theorems and their machine produced proofs using full-angles. WSU technical report (1995)Google Scholar
  36. 36.
    Chou, S.C., Gao, X.S., Zhang, J.Z.: A deductive database approach to automated geometry theorem proving and discovering. J. Autom. Reas. 25(3), 219–246 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Jamnik, M.: Mathematical Reasoning with Diagrams: From Intuition to Automation. CSLI, Stanford University, Stanford (2001)zbMATHGoogle Scholar
  38. 38.
    Guilhot, F.: Premiers pas vers un Cours de Géométrie on Coq pour le Lycée. Research Report N° 4893, 44 pages, INRIA (2003)Google Scholar
  39. 39.
    Dehlinger, C., Dufourd, J.F., Schreck, P.: Higher-order intuitionistic formalization and proofs in Hilbert’s elementary geometry. In: 3rd Int. Workshop on Automated Deduction in Geometry, Zurich, Switzerland, 2000. LNAI, vol. 2061, pp. 306–323. Springer, New York (2001)CrossRefGoogle Scholar
  40. 40.
    Narboux, J.: Mechanical theorem proving in Tarski’s geometry. In: Botana, F., Recio, T. (eds.) Workshop on Automated Deduction in Geometry, Pontevedra, Spain, 2006. LNAI, vol. 4869, pp. 139–156. Springer, New York (2008)CrossRefGoogle Scholar
  41. 41.
    Narboux, J.: A decision procedure for geometry in Coq. In: TPHOL’04 Proceedings. LNCS, vol. 3223. Springer, New York (2004)Google Scholar
  42. 42.
    Chou, S.C., Ye, Z., Gao, X.S.: Visually Dynamic Presentation of Proofs in Plane. Part 3. Automated Generation of Visually Dynamic Presentations with the Traditional Method and Automated Addition of Auxiliary Geometry Elements (2009, in preparation)Google Scholar
  43. 43.
    Dolzmann, A., Gilch, L.A.: Generic Hermitian quantifier elimination. In: Campbell, J.A., Buchberger, B. (eds.) Artificial Intelligence and Symbolic Computation: 7th International Conference, AISC 2004, Linz, Austria. Lecture Notes in Computer Science, vol. 3249, pp. 80–93. Springer, Berlin (2004)Google Scholar
  44. 44.
    Jamnik, M., Bundy, A., Green, I.: On automating diagrammatic proofs of arithmetic arguments, In: Proceedings of International Joint Conference on AI (1997)Google Scholar
  45. 45.
    Weispfenning, V.: A new approach to quantifier elimination for real algebra. In: Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition, Texts and Monographs in Symbolic Computation, pp. 376–392. Springer, Wien (1998)Google Scholar
  46. 46.
    Winterstein, D., Bundy, A., Gurr,C.: Dr. Doodle: a diagrammatic theorem prover In: Proceedings of 2nd International Joint Conference, Cork, Ireland, pp. 331–335, July 4–8, (2004)Google Scholar
  47. 47.
    Winterstein, D.: Using diagrammatic reasoning for theorem proving in a continuous domain. Ph.D. thesis, 263 p., The University of Edinburgh (2004)Google Scholar
  48. 48.
    Ye, Z., Chou, S.C., Gao, X.S.: A Collection of Examples Created with JGEX. In: http://woody.cs.wichita.edu/collection/index.html (2009)
  49. 49.
    Ye, Z., Chou, S.C., Gao, X.S.: Visually dynamic presentation of proofs in plane, part 2. Automated generation of visually dynamic presentations with the full-angle method and the deductive database method. J. Autom. Reason. (2009, in press)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.College of Computer Science and TechnologyZhejiang UniversityHangzhouChina
  2. 2.Department of Computer ScienceWichita State UniversityWichitaUSA
  3. 3.KLMM, Institute of Systems ScienceThe Chinese Academy of SciencesBeijingChina

Personalised recommendations