Journal of Automated Reasoning

, Volume 44, Issue 4, pp 401–424

Deciding Effectively Propositional Logic Using DPLL and Substitution Sets

  • Ruzica Piskac
  • Leonardo de Moura
  • Nikolaj Bjørner
Article

Abstract

We introduce a DPLL calculus that is a decision procedure for the Bernays-Schönfinkel class, also known as EPR. Our calculus allows combining techniques for efficient propositional search with data-structures, such as Binary Decision Diagrams, that can efficiently and succinctly encode finite sets of substitutions and operations on these. In the calculus, clauses comprise of a sequence of literals together with a finite set of substitutions; truth assignments are also represented using substitution sets. The calculus works directly at the level of sets, and admits performing simultaneous constraint propagation and decisions, resulting in potentially exponential speedups over existing approaches.

Keywords

DPLL SAT BDDs Effectively propositional logic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersen, H.R., Hulgaard, H.: Boolean expression diagrams. Inf. Comput. 179(2), 194–212 (2002)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baumgartner, P.: Logical engineering with instance-based methods. In: Pfenning, F. (ed.) Automated Deduction—CADE-21, 21st International Conference on Automated Deduction, Bremen, Germany, 17–20 July, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4603, pp. 404–409. Springer (2007)Google Scholar
  3. 3.
    Baumgartner, P., Fuchs, A., Tinelli, C.: Implementing the model evolution calculus. Int. J. Artif. Intell. Tools 15(1), 21–52 (2006)CrossRefGoogle Scholar
  4. 4.
    Baumgartner, P., Fuchs, A., Tinelli, C.: Lemma learning in the model evolution calculus. In: Hermann, M., Voronkov, A. (eds.) LPAR. Lecture Notes in Computer Science, vol. 4246, pp. 572–586. Springer, New York (2006)Google Scholar
  5. 5.
    Baumgartner, P., Tinelli, C.: The model evolution calculus as a first-order DPLL method. Artif. Intell. 172(4–5), 591–632 (2008)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. C-35(8), 677–691 (1986)CrossRefGoogle Scholar
  7. 7.
    Claessen, K., Sörensson, N.: New techniques that improve mace-style finite model finding. In: CADE-19 Workshop: Model Computation—Principles, Algorithms, Applications (2003)Google Scholar
  8. 8.
    de Moura, L., Bjørner, N.: Deciding effectively propositional logic using DPLL and substitution sets. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008 (2008)Google Scholar
  9. 9.
    de Nivelle, H., Meng, J.: Geometric resolution: a proof procedure based on finite model search. In: Furbach, U., Shankar, N. (eds.) IJCAR. Lecture Notes in Computer Science, vol. 4130, pp. 303–317. Springer, New York (2006)Google Scholar
  10. 10.
    Dershowitz, N., Hanna, Z., Katz, J.: Bounded model checking with QBF. In: Bacchus, F., Walsh, T. (eds.) SAT. Lecture Notes in Computer Science, vol. 3569, pp. 408–414. Springer, New York (2005)Google Scholar
  11. 11.
    Eén, N., Sörensson, N.: An extensible sat-solver. In: Proceedings of the Sixth International Conference on Theory and Applications of Satisfiability Testing (SAT), pp. 502–518 (2003)Google Scholar
  12. 12.
    Fermüller, C.G., Leitsch, A., Hustadt, U., Tammet, T.: Resolution decision procedures. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 1791–1849. Elsevier and MIT, Amsterdam (2001)CrossRefGoogle Scholar
  13. 13.
    Gallo, G., Rago, G.: The satisfiability problem for the Schönfinkel-Bernays fragment: partial instantiation and hypergraph algorithms. Technical report 4/94, Dip. Informatica, Universit‘a di Pisa (1994)Google Scholar
  14. 14.
    Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem proving. In: LICS, pp. 55–64. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  15. 15.
    Krstic, S., Goel, A.: Architecting solvers for SAT modulo theories: Nelson-Oppen with DPLL. In: Konev, B., Wolter, F. (eds.) FroCos. Lecture Notes in Computer Science, vol. 4720, pp. 1–27. Springer, New York (2007)Google Scholar
  16. 16.
    Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput. Syst. Sci. 21(3), 317–353 (1980)MATHCrossRefGoogle Scholar
  17. 17.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J. ACM 53(6), 937–977 (2006)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Pérez, J.A.N., Voronkov, A.: Encodings of bounded LTL model checking in effectively propositional logic. In: Pfenning, F. (ed.) Automated Deduction—CADE-21, 21st International Conference on Automated Deduction, Bremen, Germany, 17–20 July, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4603, pp. 346–361. Springer, New York (2007)Google Scholar
  19. 19.
    Pérez, J.A.N., Voronkov, A.: Proof systems for effectively propositional logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008 (2008)Google Scholar
  20. 20.
    Piskac, R., de Moura, L., Bjørner, N.: Deciding effectively propositional logic with equality. Technical report MSR-2008-161, Microsoft Research (2008)Google Scholar
  21. 21.
    Tammet, T., Kadarpik, V.: Combining an inference engine with database: a rule server. In: Schroeder, M., Wagner, G. (eds.) RuleML. Lecture Notes in Computer Science, vol. 2876, pp. 136–149. Springer, New York (2003)Google Scholar
  22. 22.
    Voronkov, A.: Merging relational database technology with constraint technology. In: Bjørner, D., Broy, M., Pottosin, I.V. (eds.) Ershov Memorial Conference. Lecture Notes in Computer Science, vol. 1181, pp. 409–419. Springer, New York (1996)Google Scholar
  23. 23.
    Whaley, J., Avots, D., Carbin, M., Lam, M.S.: Using datalog with binary decision diagrams for program analysis. In: Yi, K. (ed.) APLAS. Lecture Notes in Computer Science, vol. 3780, pp. 97–118. Springer, New York (2005)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ruzica Piskac
    • 1
  • Leonardo de Moura
    • 1
  • Nikolaj Bjørner
    • 1
  1. 1.Microsoft ResearchRedmondUSA

Personalised recommendations