Journal of Automated Reasoning

, Volume 45, Issue 1, pp 39–59 | Cite as

A New Default Theories Compilation for MSP-Entailment

Article

Abstract

Handling exceptions represents one of the most important problems in Artificial Intelligence. Several approaches have been proposed for reasoning on default theories. This paper focuses on a possibilistic approach, and more precisely on the MSP-entailment (where MSP stands for Minimum Specificity Principle) from default theories which is equivalent to System P augmented by rational monotony. In order to make this entailment tractable from a computational point of view, we propose here a compilation of default theories with respect to a target compilation language. This allows us to provide polynomial algorithms to derive efficiently the MSP-conclusions of a compiled default theory. Moreover, the proposed compilation is qualified to be flexible since it efficiently takes advantage of any classical compiler and generally provides a low recompilation cost when updating a compiled default theory.

Keywords

Default theories MSP entailment Knowledge compilation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    AbouElKalam, A., Benferhat, S., Miège, A., ElBaida, R., Cuppens, F., Saurel, C., Balbiani, P., Deswarte, Y., Trouessin, G.: Organization based access control. In: Policies for Distributed Systems and Networks (POLICY’03), pp. 120–128 (2003)Google Scholar
  2. 2.
    Benferhat, S., Bonnefon, J.-F., Neves, R.D.S.: An experimental analysis of possibilistic default reasoning. In: 9th International Conference on the Principles of Knowledge Representation and Reasoning (KR’04), pp. 130–140 (2004)Google Scholar
  3. 3.
    Benferhat, S., Dubois, D., Cayrol, C., Lang, J., Prade, H.: Inconsistency management and prioritized syntaxbased entailment. In: 13th International Joint Conference on Artificial Intelligence (IJCAI’93), pp. 640–645 (1993)Google Scholar
  4. 4.
    Benferhat, S., Dubois, D., Prade, H.: Practical Handling of Exception-tainted rules and independence information in possibilistic logic. J. Appl. Intell. 9(2), 101–127 (1998)CrossRefGoogle Scholar
  5. 5.
    Benferhat, S., Yahi, S., Drias, H.: On the compilation of stratified belief bases under linear and possibilistic logic policies. In: 20th International Joint Conference on Artificial Intelligence (IJCAI’ 07), pp. 2428–2430 (2007)Google Scholar
  6. 6.
    Benferhat, S., Yahi, S., Drias, H.: On the compilation of possibilistic default theories. In: 21st International Florida Artificial Intelligence Research Society Conference (Flairs’08), pp. 613–618. AAAI, Menlo Park (2008)Google Scholar
  7. 7.
    Boufkhad, Y., Grégoire, É., Marquis, P., Mazure, B., Sais, L.: Tractable Cover Compilations. In: IJCAI (1), pp. 122–127 (1997)Google Scholar
  8. 8.
    Bouquet, F., Jégou, P.: Using OBDDs to handle dynamic constraints. In: Information Processing Letters, pp. 111–120 (1997)Google Scholar
  9. 9.
    Cadoli, M., Donini, F.M.: A survey on knowledge compilation. Artif. Intell. Commun. 10, 137–150 (1997)Google Scholar
  10. 10.
    Darwiche, A.: Decomposable negation normal form. J. ACM 48(4), 608–647 (2001)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Darwiche, A.: A compiler for deterministic, decomposable negation normal form. In: Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI), pp. 627–634. AAAI, Menlo Park (2002)Google Scholar
  12. 12.
    Darwiche, A.: New advances in compiling CNF to decomposable negational normal form. In: Proceedings of European Conference on Artificial Intelligence (2004)Google Scholar
  13. 13.
    Darwiche, A., Hopkins, M.: Using recursive decomposition to construct elimination orders, jointrees and dtrees. In: Trends in Artificial Intelligence. Lecture Notes in AI, 2143, pp. 180–191. Springer, New York (2001)Google Scholar
  14. 14.
    Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17, 229–264 (2002)MATHMathSciNetGoogle Scholar
  15. 15.
    de Kleer, J.: Problem solving with the ATMS. Artif. Intell. 28, 197–224 (1986)CrossRefGoogle Scholar
  16. 16.
    Dubois, D., Lang, J., Prade, H.: Possibilistic logic. Handb Log. Art. Intell. Log. Program. 3, 439–513 (1994)MathSciNetGoogle Scholar
  17. 17.
    Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of Uncertainty. Plenum, New York (1988)MATHGoogle Scholar
  18. 18.
    Goldszmidt, M., Pearl, J.: System-Z+: a formalism for reasoning with variable-strength defaults. In: 9th National conference in Artificial Intelligence (AAAI’91), pp. 399–404 (1991)Google Scholar
  19. 19.
    Kraus, S., Lehmann, D.J., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 44(1–2), 167–207 (1990)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Lang, J.: Possibilistic logic: complexity and algorithms. Handb. Defeasible Reason. Uncertain. Manag. Sys. 5, 179–220 (2000)Google Scholar
  21. 21.
    Lehmann, D.J.: Another perspective on default reasoning. Ann. Math. Artif. Intell. 15(1), 61–82 (1995)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Lehmann, D.J., Magidor, M.: What does a Conditional Knowledge Base Entail?. Artif. Intell. 55(1), 1–60 (1992)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Linke, T., Schaub, T.: An approach to query-answering in Reiter’s default logic and the underlying existence of extensions problem. In: 6th Logics in Artificial Intelligence (JELIA’98), pp. 233–247 (1998)Google Scholar
  24. 24.
    Linke, T., Schaub, T.: Alternative foundations for Reiter’s default logic. Artif. Intell. 124(1), 31–86 (2000)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    McCarthy, J.: Circumscription—a form of non-monotonic reasoning. Artif. Intell. 13(1–2), 27–39 (1980)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Mengin, J.: A theorem prover for default logic based on prioritized conflict resolution and an extended resolution principle. In: 3th Symbolic and Quantitative Approaches to Reasoning and Uncertainty (ECSQARU’95), pp. 301–310 (1995)Google Scholar
  27. 27.
    Morgenstern, L.: Inheritance comes of age: applying nonmonotonic techniques to problems in industry. In: 15 th International Joint Conference on Artificial Intelligence (IJCAI’97), pp. 1613–1613 (1997)Google Scholar
  28. 28.
    Nebel, B.: How hard is it to revise a belief base?. In: Handbook of Defeasible Reasoning and Uncertainty Management Systems, pp. 77–145 (1998)Google Scholar
  29. 29.
    Papadimitriou, C.H.: Computational Complexity. Addison Wesley, Reading (1994)MATHGoogle Scholar
  30. 30.
    Pearl, J.: System Z: a natural ordering of defaults with tractable applications to default reasoning. In: 6th Theoretical Aspects of Rationality and Knowledge (TARK’90), pp. 121–135 (1990)Google Scholar
  31. 31.
    Reiter, R.: A logic for default reasoning. Artif. Intell. 13(1–2), 81–132 (1980)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access control models. IEEE Comput. 29(2), 38–47 (1996)Google Scholar
  33. 33.
    Schrag, R., Crawford, J.M.: Implicates and prime implicates in random 3-SAT. Artif. Intell. 81(1–2), 199–222 (1996)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Yager, R.R.: On the specificity of a possibility distribution. Fuzzy Sets Syst. 50, 279–292 (1992)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Université Lille-Nord de FranceLensFrance
  2. 2.CRILLensFrance
  3. 3.CNRS UMR 8188LensFrance
  4. 4.Ecole nationale Supérieure d’InformatiqueAlgiersAlgeria
  5. 5.Université des Sciences et de la Technologie Houari BoumedieneAlgiersAlgeria

Personalised recommendations