MetiTarski: An Automatic Theorem Prover for Real-Valued Special Functions
Article
First Online:
- 173 Downloads
- 38 Citations
Abstract
Many theorems involving special functions such as ln, exp and sin can be proved automatically by MetiTarski: a resolution theorem prover modified to call a decision procedure for the theory of real closed fields. Special functions are approximated by upper and lower bounds, which are typically rational functions derived from Taylor or continued fraction expansions. The decision procedure simplifies clauses by deleting literals that are inconsistent with other algebraic facts. MetiTarski simplifies arithmetic expressions by conversion to a recursive representation, followed by flattening of nested quotients. Applications include verifying hybrid and control systems.
Keywords
Special Function Decision Procedure Continue Fraction Theorem Prover Axiom System
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Wiley, New York (1972)zbMATHGoogle Scholar
- 2.Akbarpour, B., Paulson, L.: Extending a resolution prover for inequalities on elementary functions. In: Logic for Programming, Artificial Intelligence, and Reasoning, pp. 47–61 (2007)Google Scholar
- 3.Akbarpour, B., Paulson, L.: MetiTarski: an automatic prover for the elementary functions. In: Autexier, S., et al. (eds.) Intelligent Computer Mathematics. LNCS, vol. 5144, pp. 217–231. Springer, New York (2008)CrossRefGoogle Scholar
- 4.Akbarpour, B., Paulson, L.C.: Towards automatic proofs of inequalities involving elementary functions. In: Cook, B., Sebastiani, R. (eds.): PDPAR: Pragmatics of Decision Procedures in Automated Reasoning, pp. 27–37 (2006)Google Scholar
- 5.Akbarpour, B., Paulson, L.C.: Applications of MetiTarski in the verification of control and hybrid systems. In: Majumdar, R., Tabuada, P. (eds.) Hybrid Systems: Computation and Control. LNCS, vol. 5469, pp. 1–15. Springer, New York (2009)CrossRefGoogle Scholar
- 6.Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Google Scholar
- 7.Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, chap. 2, pp. 19–99. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
- 8.Backeljauw, F., Becuwe, S., Colman, M., Cuyt, A., Docx, T.: Special functions: continued fraction and series representations. http://www.cfhblive.ua.ac.be/ (2008)
- 9.Beeson., M.: Automatic generation of a proof of the irrationality of e. J. Symb. Comput. 32(4), 333–349 (2001)CrossRefMathSciNetGoogle Scholar
- 10.Bergstra, J.A., Tucker, J.V.: The rational numbers as an abstract data type. J. ACM 54(2), Article No. 7 (2007)Google Scholar
- 11.Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets using CADs. SIGSAM Bull. 37(4), 97–108 (2003)zbMATHCrossRefGoogle Scholar
- 12.Bullen, P.S.: A Dictionary of Inequalities. Longman, New York (1998)zbMATHGoogle Scholar
- 13.Clarke, E., Zhao, X.: Analytica: a theorem prover for mathematica. Math. J. 3(1), 56–71 (1993)Google Scholar
- 14.Cuyt, A., Petersen, V., Verdonk, B., Waadeland, H., Jones, W.: Handbook of Continued Fractions for Special Functions. Springer, New York (2008)zbMATHGoogle Scholar
- 15.Cuyt, A.A.M.: Upper/lower bounds (2008). E-mail dated 7 September 2008Google Scholar
- 16.Cuyt, A.A.M., Verdonk, B., Waadeland, H.: Efficient and reliable multiprecision implementation of elementary and special functions. SIAM J. Sci. Comput. 28(4), 1437–1462 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
- 17.Daumas, M., Muñoz, C., Lester, D.: Verified real number calculations: a library for integer arithmetic. IEEE Trans. Comput. 58(2), 226–237 (2009)CrossRefGoogle Scholar
- 18.Denman, W., Akbarpour, B., Tahar, S., Zaki, M., Paulson, L.C.: Automated formal verification of analog designs using MetiTarski. In: Biere, A., Pixley, C. (eds.) Formal Methods in Computer Aided Design (2009)Google Scholar
- 19.Dolzmann, A., Sturm, T., Weispfenning, V.: Real quantifier elimination in practice. Technical report MIP-9720, Universität Passau, D-94030, Germany (1997)Google Scholar
- 20.Fränzle, M., Herde, C., Ratschan, S., Schubert, T., Teige, T.: Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure. Journal on Satisfiability, Boolean Modeling and Computation 1, 209–236 (2007)Google Scholar
- 21.Gottliebsen, H., Hardy, R., Lightfoot, O., Martin, U.: Applications of real number theorem proving in PVS. Preprint (2007)Google Scholar
- 22.Grégoire, B., Mahboubi, A.: Proving equalities in a commutative ring done right in Coq. In: Hurd, J., Melham, T. (eds.) Theorem Proving in Higher Order Logics: TPHOLs 2005. LNCS, vol. 3603, pp. 98–113. Springer, New York (2005)Google Scholar
- 23.Hardy, R.: Formal methods for control engineering: a validated decision procedure for Nichols plot analysis. Ph.D. thesis, University of St Andrews (2006)Google Scholar
- 24.Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge University Press, Cambridge (2009)zbMATHCrossRefGoogle Scholar
- 25.Herde, C.: HySAT Quick Start Guide. University of Oldenburg. http://hysat.informatik.uni-oldenburg.de/user_guide/hysat-user-guide.pdf (2008)
- 26.Hong, H.: QEPCAD—quantifier elimination by partial cylindrical algebraic decomposition. http://www.cs.usna.edu/~qepcad/B/QEPCAD.html (2008)
- 27.Hörmander, L.: The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficient. Springer, New York (2006) (First published in 1983; cited by McLaughlin and Harrison [34])Google Scholar
- 28.Hurd, J.: Metis first order prover. http://gilith.com/software/metis/ (2007)
- 29.Kaczor, W.J., Nowak, M.T.: Problems in Mathematical Analysis II: Continuity and Differentiation. American Mathematical Society, Providence (2001)Google Scholar
- 30.Korovkin, P.P.: Inequalities. Pergamon, Oxford (1961)zbMATHGoogle Scholar
- 31.Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computation for families of linear vector fields. J. Symb. Comput. 32(3), 231–253 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
- 32.Ludwig, M., Waldmann, U.: An extension of the Knuth-Bendix ordering with LPO-like properties. In: Dershowitz, N., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence, and Reasoning, LPAR 2007. Lecture Notes in Computer Science, vol. 4790, pp. 348–362. Springer, New York (2007)CrossRefGoogle Scholar
- 33.McCune, W., Wos, L.: Otter: the CADE-13 competition incarnations. J. Autom. Reason. 18(2), 211–220 (1997)CrossRefGoogle Scholar
- 34.McLaughlin, S., Harrison, J.: A proof-producing decision procedure for real arithmetic. In: Nieuwenhuis, R. (ed.) Automated Deduction—CADE-20 International Conference. LNAI, vol. 3632, pp. 295–314. Springer, New York (2005)Google Scholar
- 35.Mitrinović, D.S., Vasić, P.M.: Analytic Inequalities. Springer, New York (1970)zbMATHGoogle Scholar
- 36.Muller, J.M.: Elementary Functions: Algorithms and Implementation, 2nd edn. Birkhäuser, Boston (2006)zbMATHGoogle Scholar
- 37.Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96(2), 293–320 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
- 38.Prevosto, V., Waldmann, U.: SPASS+T. In: Sutcliffe, G., Schmidt, R., Schulz, S. (eds.) FLoC’06 Workshop on Empirically Successful Computerized Reasoning, CEUR Workshop Proceedings, vol. 192, pp. 18–33 (2006)Google Scholar
- 39.Ratschan, S.: Efficient solving of quantified inequality constraints over the real numbers. ACM Trans. Comput. Log. 7(4), 723–748 (2006)MathSciNetGoogle Scholar
- 40.Ratschan, S.: RSolver user manual. Academy of Sciences of the Czech Republic. http://rsolver.sourceforge.net/documentation/manual.pdf (2007)
- 41.Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation based abstraction refinement ACM Trans. Embed. Comput. Syst. 6(1) (2007)Google Scholar
- 42.Ratschan, S., She, Z.: Benchmarks for safety verification of hybrid systems. http://hsolver.sourceforge.net/benchmarks/ (2008)
- 43.Sutcliffe, G., Zimmer, J., Schulz, S.: TSTP data-exchange formats for automated theorem proving tools. In: Zhang, W., Sorge, V. (eds.) Distributed Constraint Problem Solving and Reasoning in Multi-Agent Systems, Frontiers in Artificial Intelligence and Applications, number 112, pp. 201–215. IOS, Amsterdam (2004)Google Scholar
Copyright information
© Springer Science+Business Media B.V. 2009