Journal of Automated Reasoning

, Volume 43, Issue 3, pp 305–336 | Cite as

Rewriting Conversions Implemented with Continuations

  • Michael NorrishEmail author


We give a continuation-based implementation of rewriting for systems in the LCF tradition. These systems must construct explicit proofs of equations when rewriting, and currently do so in a way that can be very space-inefficient. An explicit representation of continuations improves performance on large terms, and on long-running computations.


Rewriting Interactive theorem-proving Continuation-passing style 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barras, B.: Programming and computing in HOL. In: Aagard, M., Harrison, J. (eds.) Theorem Proving in Higher Order Logics, 13th International Conference, TPHOLs 2000. Lecture Notes in Computer Science, vol. 1869, pp. 17–37. Springer, New York (2000)CrossRefGoogle Scholar
  2. 2.
    Benton, N., Kennedy, A.: Exceptional syntax. J. Funct. Program. 11(4), 395–410 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bishop, S., Fairbairn, M., Norrish, M., Sewell, P., Smith, M., Wansbrough, K.: Engineering with logic: HOL specification and symbolic-evaluation testing for TCP implementations. In: POPL’06: Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 55–66. ACM, New York (2006)CrossRefGoogle Scholar
  4. 4.
    Boulton, R.J.: Transparent optimisation of rewriting combinators. J. Funct. Program. 9(2), 113–146 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chrząszcz, J., Walukiewicz-Chrząszcz, D.: Towards rewriting in Coq. In: Comon-Lundh, H., Kirchner, C., Kirchner, H. (eds.) Rewriting, Computation and Proof: Essays Dedicated to Jean-Pierre Jouannaud on the Occasion of his 60th Birthday. Lecture Notes in Computer Science, vol. 4600, pp. 113–131. Springer, New York (2007)Google Scholar
  6. 6.
    Gordon, M.J.C., Melham, T. (eds.): Introduction to HOL: A Theorem Proving Environment for Higher Order Logic. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  7. 7.
    Harrison, J.: HOL Light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) Proceedings of the First International Conference on Formal Methods in Computer-Aided Design (FMCAD’96). Lecture Notes in Computer Science, vol. 1166, pp. 265–269. Springer, New York (1996)CrossRefGoogle Scholar
  8. 8.
    HOL: HOL website. (2009)
  9. 9.
    Jones, R.B.: ICL ProofPower. BCS-FACS FACTS, Series III 1(1), 10–13 (1992)Google Scholar
  10. 10.
    Martin, H.W., Orr, B.J.: A random binary tree generator. In: CSC ’89: Proceedings of the 17th Annual Computer Science Conference, pp. 33–38. ACM, New York (1989)Google Scholar
  11. 11.
    Paulson, L.: A higher-order implementation of rewriting. Sci. Comput. Program. 3(2), 119–149 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Paulson, L.C.: Isabelle: A Generic Theorem Prover. Lecture Notes in Computer Science, vol. 828. Springer, Berlin (1994)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Canberra Research Lab.NICTACanberraAustralia

Personalised recommendations