Journal of Automated Reasoning

, Volume 43, Issue 3, pp 237–242 | Cite as

Computer Assisted Reasoning

A Festschrift for Michael J. C. Gordon
Article
  • 50 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amjad, H.: Programming a symbolic model checker in a fully expansive theorem prover. In: Theorem Proving in Higher Order Logics (TPHOLs). 16th International Conference, Proceedings. LNCS, vol. 2758, pp. 171–187. Springer, New York (2003)CrossRefGoogle Scholar
  2. 2.
    Arthan, R., Bishop-Jones, R.: Z in Hol in ProofPower, pp. 387–439. FACS FACTS (2005)Google Scholar
  3. 3.
    Boulton, R., Gordon, A., Gordon, M., Harrison, J., Herbert, J., Van Tassel, J.: Experience with embedding hardware description languages in HOL. In: Stavridou, V., Melham, T.F., Boute, R.T. (eds.) Proceedings of the IFIP TC10/WG 10.2 International Conference on Theorem Provers in Circuit Design: Theory, Practice and Experience (Nijmegen, The Netherlands) IFIP Transactions, vol. A-10, pp. 129–156. Elsevier, Amsterdam (1992)Google Scholar
  4. 4.
    Boulton, R., Slind, K., Bundy, A., Gordon, M.: An interface between Clam and HOL. In: Grundy, J., Newey, M. (eds.) Theorem Proving in Higher Order Logics. 11th International Conference, TPHOLs’98 (Canberra). Lecture Notes in Computer Science, no. 1479, pp. 87–104. Springer, New York (1998)Google Scholar
  5. 5.
    Boulton, R.: Efficiency in a fully-expansive theorem prover. Ph.D. thesis, Tech. Report 337, University of Cambridge Computer Laboratory (1994)Google Scholar
  6. 6.
    Cohn, A.: A proof of correctness of the Viper microprocessor: the first level. In: Birtwistle, G., Subrahmanyam, P.A. (eds.) VLSI Specification, Verification, and Synthesis, pp. 27–71. Kluwer Academic, Dordrecht (1988)Google Scholar
  7. 7.
    Cohn, A.: Correctness of the Viper block model: the second level. In: Birtwistle, G., Subrahmanyam, P.A. (eds.) Current Trends in Hardware Verification and Automated Theorem Proving, pp. 1–91. Springer, New York (1989)Google Scholar
  8. 8.
    Cohn, A.: The notion of proof in hardware verification. J. Autom. Reason. 5(2), 127–139 (1989)MATHCrossRefGoogle Scholar
  9. 9.
    Dennis, L.A., Collins, G., Norrish, M., Boulton, R., Slind, K., Robinson, G., Gordon, M., Melham, T: The PROSPER toolkit. In: Graf, S., Schwartzbach, M. (eds.) Tools and Algorithms for the Construction and Analysis of Systems: 6th International Conference, TACAS 2000. Lecture Notes in Computer Science, vol. 1785, pp. 78–92. Springer, New York (2000)Google Scholar
  10. 10.
    Fox, A.: A HOL specification of the ARM instruction set architecture. Tech. Report 545, University of Cambridge Computer Laboratory (2001)Google Scholar
  11. 11.
    Fox, A.: Formal verification of the ARM6 micro-architecture. Tech. Report 548, University of Cambridge Computer Laboratory (2002)Google Scholar
  12. 12.
    Gordon, M.J.C.: Specification and verification I. http://www.cl.cam.ac.uk/~mjcg/Teaching/SpecVer1.html (2009)
  13. 13.
    Gordon, M.J.C.: Specification and verification II. http://www.cl.cam.ac.uk/~mjcg/Teaching/SpecVer2.html (2009)
  14. 14.
    Gordon, M.J.C.: Evaluation and denotation of pure LISP programs. Ph.D. thesis, University of Edinburgh (1973)Google Scholar
  15. 15.
    Gordon, M.J.C.: The denotational description of programming languages: an introduction. Springer, New York (1979)MATHGoogle Scholar
  16. 16.
    Gordon, M.J.C.: Mechanizing programming logics in higher order logic. Current Trends in Hardware Verification and Automated Theorem Proving, pp. 387–439. Springer, New York (1989)Google Scholar
  17. 17.
    Gordon, M.J.C.: Representing a Logic in the LCF Metalanguage. In: N’eel, D. (ed.) Tools and Notions for Program Construction, pp. 163–185. Cambridge University Press, Cambridge (1982)Google Scholar
  18. 18.
    Gordon, M.J.C.: Proving a computer correct with the LCF_LSM hardware verification system. Tech. Report 42, University of Cambridge Computer Laboratory (1983)Google Scholar
  19. 19.
    Gordon, M.J.C.: Why Higher-Order Logic is a good formalism for specifying and verifying hardware. Tech. Report 77, University of Cambridge Computer Laboratory (1985)Google Scholar
  20. 20.
    Gordon, M.J.C.: The semantic challenge of Verilog HDL. In: Proceedings, Tenth Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 136–145 (1995)Google Scholar
  21. 21.
    Gordon, M.J.C.: Reachability programming in HOL98 using BDDs. In: Aagaard M., Harrison, J. (eds.) Theorem Proving in Higher Order Logics: 13th International Conference, TPHOLs 2000. Lecture Notes in Computer Science, vol. 1869, pp. 179–196. Springer, New York (2000)Google Scholar
  22. 22.
    Gordon, M.J.C.: Validating the PSL/Sugar semantics using automated reasoning. Form. Asp. Comput. 15(4), 406–421 (2003)MATHCrossRefGoogle Scholar
  23. 23.
    Gordon, M., Milner, R., Morris, L., Newey, M., Wadsworth, C.: A Metalanguage for interactive proof in LCF. In: POPL ’78: Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pp. 119–130. ACM, New York (1978)CrossRefGoogle Scholar
  24. 24.
    Gordon, M., Milner, R., Wadsworth, C.: Edinburgh LCF: a mechanised logic of computation. Lecture Notes in Computer Science, vol. 78. Springer, New York (1979)Google Scholar
  25. 25.
    Gordon, M.J.C., Hunt, W.A., Kaufmann, M., Reynolds, J.: An embedding of the ACL2 logic in HOL. In: Proceedings of ACL2 2006, ACM International Conference Proceeding Series, vol. 205, pp. 40–46. ACM, New York (2006)Google Scholar
  26. 26.
    Gordon, M.J.C., Reynolds, J., Hunt, W.A., Kaufmann, M.: An integration of HOL and ACL2. In: Proceedings of FMCAD 2006, pp. 153–160. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  27. 27.
    Gordon M., Melham, T.: Introduction to HOL, a theorem proving environment for higher order logic. Cambridge University Press, Cambridge (1993)MATHGoogle Scholar
  28. 28.
    Graham, B.: The SECD microprocessor, a verification case study. Kluwer Academic, Boston (1992)MATHGoogle Scholar
  29. 29.
    Harrison, J.: HOL-Light: a tutorial introduction. In: Proceedings of the First International Conference on Formal Methods in Computer-Aided Design (FMCAD’96). LNCS, vol. 1166, pp. 265–269. Springer, New York (1996)Google Scholar
  30. 30.
    Hurd, J.: First-Order Proof Tactics in Higher-Order Logic Theorem Provers. In: Proceedings of STRATA 2003, First International Workshop on Design and Application of Strategies/Tactics in Higher Order Logics. NASA Tech. Report CP-2003-212448.Google Scholar
  31. 31.
    MacKenzie, D.: Mechanizing Proof: Computing, Risk, and Trust. MIT, Cambridge (2001)MATHGoogle Scholar
  32. 32.
    Melham, T. F.: A mechanized theory of the Π-calculus in HOL. Nord. J. Comput. 1(1), 50–76 (1994)MathSciNetGoogle Scholar
  33. 33.
    Milner, R.: Communication and Concurrency. International Series in Computer Science. Prentice Hall, Englewood Cliffs (1989)Google Scholar
  34. 34.
    Myreen M., Gordon, M.: Hoare logic for realistically modelled machine code. In: Proceedings of TACAS 2007. LNCS, vol. 4424. Springer, New York (2007)Google Scholar
  35. 35.
    Nesi, M.: Formalising process calculi in higher order logic. Ph.D. thesis, University of Cambridge Computer Laboratory (1996)Google Scholar
  36. 36.
    Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—a proof assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, New York (2002)Google Scholar
  37. 37.
    Norrish, M.: C formalised in HOL. Ph.D. thesis, University of Cambridge Computer Laboratory. Tech. Report Number UCAM-CL-TR-453 (1998)Google Scholar
  38. 38.
    Norrish, M.: A formal semantics for C+ +. Tech. report, NICTA. http://nicta.com.au/people/norrishm/attachments/bibliographies_and_papers/C-TR.pdf (2008)
  39. 39.
    Paulson, L.: Logic and Computation: Interactive Proof with Cambridge LCF. Cambridge University Press, Cambridge (1987)MATHGoogle Scholar
  40. 40.
    Regensburger, F.: HOLCF: Higher order logic of computable functions. In: Higher Order Logic Theorem Proving and Its Applications: 8th International Workshop. LNCS, vol. 971, pp. 293–307. Springer, New York (1995)Google Scholar
  41. 41.
    Slind K., Norrish, M.: A brief overview of HOL-4. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs. LNCS, vol. 5170, pp. 28–32. Springer, New York (2008)Google Scholar
  42. 42.
    Slind K., Owens, S., Iyoda, J., Gordon, M.: Proof producing synthesis of arithmetic and cryptographic hardware. Form. Asp. Comput. 19(3), 343–362 (2007)MATHCrossRefGoogle Scholar
  43. 43.
    Syme, D.: Declarative theorem proving for operational semantics. Ph.D. thesis, University of Cambridge Computer Laboratory (1998)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Icera Inc.BristolUK
  2. 2.Galois, Inc.PortlandUSA
  3. 3.Rockwell Collins Advanced Technology CenterN.E. Cedar RapidsUSA

Personalised recommendations