Journal of Automated Reasoning

, Volume 43, Issue 2, pp 173–201 | Cite as

KBO Orientability

Article

Abstract

This article presents three new approaches to prove termination of rewrite systems with the Knuth–Bendix order efficiently. The constraints for the weight function and for the precedence are encoded in (pseudo-)propositional logic or linear arithmetic and the resulting formula is tested for satisfiability using dedicated solvers. Any satisfying assignment represents a weight function and a precedence such that the induced Knuth–Bendix order orients the rules of the encoded rewrite system from left to right. This means that in contrast to the dedicated methods our approach does not directly solve the problem but transforms it to equivalent formulations for which sophisticated back-ends exist. In order to make all approaches complete we present a method to compute upper bounds on the weights. Furthermore, our encodings take dependency pairs into account to increase the applicability of the order.

Keywords

Knuth–Bendix order Term rewriting Termination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comput. Sci. 236(1–2), 133–178 (2000)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Google Scholar
  3. 3.
    Codish, M., Lagoon, V., Stuckey, P.: Solving partial order constraints for LPO termination. In: Proc. 17th International Conference on Rewriting Techniques and Applications. LNCS, vol. 4098, pp. 4–18 (2006)Google Scholar
  4. 4.
    Codish, M., Schneider-Kamp, P., Lagoon, V., Thiemann, R., Giesl, J.: SAT solving for argument filterings. In: Proc. 13th International Conference on Logic for Programming, Artificial Intelligence and Reasoning. LNAI, vol. 4246, pp. 30–44 (2006)Google Scholar
  5. 5.
    Danzig, G.: Linear Programming and Extensions. Princeton University Press, Princeton (1963)Google Scholar
  6. 6.
    Dershowitz, N.: Termination by abstraction. In: Proc. 20th International Conference on Logic Programming. LNCS, vol. 3132, pp. 1–18 (2004)Google Scholar
  7. 7.
    Dick, J., Kalmus, J., Martin, U.: Automating the Knuth–Bendix ordering. Acta Inform. 28, 95–119 (1990)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Proc. 18th International Conference on Computer Aided Verification. LNCS, vol. 4144, pp. 81–94 (2006)Google Scholar
  9. 9.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Proc. 6th International Conference on Theory and Applications of Satisfiability Testing. LNCS, vol. 2919, pp. 502–518 (2004)Google Scholar
  10. 10.
    Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. J. Satisfiab Boolean Model Comput. 2, 1–26 (2006)MATHGoogle Scholar
  11. 11.
    Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. J. Autom. Reason. 40(2–3), 195–220 (2008)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: SAT solving for termination analysis with polynomial interpretations. In: Proc. 10th International Conference on Theory and Applications of Satisfiability Testing. LNCS, vol. 4501, pp. 340–354 (2007)Google Scholar
  13. 13.
    Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: Maximal termination. In: Proc. 19th International Conference on Rewriting Techniques and Applications. LNCS, vol. 5117, pp. 110–125 (2008)Google Scholar
  14. 14.
    Fuhs, C., Navarro-Marset, R., Otto, C., Giesl, J., Lucas, S., Schneider-Kamp, P.: Search techniques for rational polynomial orders. In: Proc. 9th International Conference on Artificial Intelligence and Symbolic Computation. LNAI, vol. 5144, pp. 109–124 (2008)Google Scholar
  15. 15.
    Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic termination proofs in the dependency pair framework. In: Proc. 3rd International Joint Conference on Automated Reasoning. LNAI, vol. 4130, pp. 281–286 (2006)Google Scholar
  16. 16.
    Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework: combining techniques for automated termination proofs. In: Proc. 11th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning. LNAI, vol. 3452, pp. 301–331 (2005)Google Scholar
  17. 17.
    Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termination of higher-order functions. In: Proc. 5th International Workshop on Frontiers of Combining Systems. LNAI, vol. 3717, pp. 216–231 (2005)Google Scholar
  18. 18.
    Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. J. Autom. Reason. 37(3), 155–203 (2006)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. Inf. Comput. 199(1–2), 172–199 (2005)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Hirokawa, N., Middeldorp, A.: Tyrolean termination tool: techniques and features. Inf. Comput. 205(4), 474–511 (2007)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations (preliminary version). In: Proc. 3rd International Conference on Rewriting Techniques and Applications. LNCS, vol. 355, pp. 167–177 (1989)Google Scholar
  22. 22.
    Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4, 373–395 (1984)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Khachiyan, L.: A polynomial algorithm in linear programming. Dokl. Akad. Nauk SSSR 244, 1093–1096 (1979)MATHMathSciNetGoogle Scholar
  24. 24.
    Knuth, D., Bendix, P.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon, Oxford (1970)Google Scholar
  25. 25.
    Koprowski, A., Middeldorp, A.: Predictive labeling with dependency pairs using SAT. In: Proc. 21st International Conference on Automated Deduction. LNAI, vol. 4603, pp. 410–425 (2004)Google Scholar
  26. 26.
    Koprowski, A., Waldmann, J.: Arctic termination ... below zero. In: Proc. 19th International Conference on Rewriting Techniques and Applications. LNCS, vol. 5117, pp. 202–216 (2008)Google Scholar
  27. 27.
    Korovin, K., Voronkov., A.: Orienting rewrite rules with the Knuth–Bendix order. Inf. Comput. 183, 165–186 (2003)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Kurihara, M., Kondo, H.: Efficient BDD encodings for partial order constraints with application to expert systems in software verification. In: Proc. 17th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems. LNAI, vol. 3029, pp. 827–837 (2004)Google Scholar
  29. 29.
    Lankford, D.: On proving term rewrite systems are noetherian. Tech. Rep. MTP-3, Louisiana Technical University, Ruston, LA, USA (1979)Google Scholar
  30. 30.
    Lepper, I.: Derivation lengths and order types of Knuth–Bendix orders. Theor. Comput. Sci. 269(1–2), 433–450 (2001)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Marché, C.: Termination problems data base (TPDB), version 4.0. http://www.lri.fr/~marche/tpdb (2007)
  32. 32.
    Moser, G.: Derivational complexity of Knuth–Bendix orders revisited. In: Proc. 13th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning. LNAI, vol. 4246, pp. 75–89 (2006)Google Scholar
  33. 33.
    Plaisted, D., Greenbaum, S.: A structure-preserving clause form translation. J. Symb. Comput. 2(3), 293–304 (1986)MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Sato, H., Kurihara, M.: Implementation and performance evaluation of multi-completion procedures for term rewriting systems with recursive path orderings with status. IEICE Trans. Inf. Syst. J89-D(4), 624–631 (2006) (in Japanese)Google Scholar
  35. 35.
    Schneider-Kamp, P., Thiemann, R., Annov, E., Codish, M., Giesl, J.: Proving termination using recursive path orders and SAT solving. In: Proc. 6th International Symposium on Frontiers of Combining Systems. LNAI, vol. 4720, pp. 267–282 (2007)Google Scholar
  36. 36.
    Steinbach, J.: Extensions and comparison of simplification orders. In: Proc. 3rd International Conference on Rewriting Techniques and Applications. LNCS, vol. 355, pp. 434–448 (1989)Google Scholar
  37. 37.
    Tseitin, G.: On the complexity of derivation in propositional calculus. In: Studies in Constructive Mathematics and Mathematical Logic, Part 2, pp. 115–125 (1968)Google Scholar
  38. 38.
    Weiermann, A.: Termination proofs for term rewriting systems by lexicographic path orderings imply multiply recursive derivation lengths. Theor. Comput. Sci. 139(1–2), 355–362 (1995)MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Zankl, H.: BDD and SAT techniques for precedence based orders. Master’s thesis, University of Innsbruck (2006)Google Scholar
  40. 40.
    Zankl, H., Hirokawa, N., Middeldorp, A.: Constraints for argument filterings. In: Proc. 33rd International Conference on Current Trends in Theory and Practice of Computer Science. LNCS, vol. 4362, pp. 579–590 (2007)Google Scholar
  41. 41.
    Zankl, H., Middeldorp, A.: Satisfying KBO constraints. In: Proc. 18th International Conference on Rewriting Techniques and Applications. LNCS, vol. 4533, pp. 389–403 (2007)Google Scholar
  42. 42.
    Zankl, H., Middeldorp, A.: Increasing interpretations. In: Proc. 9th International Conference on Artificial Intelligence and Symbolic Computation. LNAI, vol. 5144, pp. 191–205 (2008)Google Scholar
  43. 43.
    Zantema, H., Waldmann, J.: Termination by quasi-periodic interpretations. In: Proc. 18th International Conference on Rewriting Techniques and Applications. LNCS, vol. 4533, pp. 404–418 (2007)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institute of Computer ScienceUniversity of InnsbruckInnsbruckAustria
  2. 2.School of Information ScienceJapan Advanced Institute of Science and TechnologyNomiJapan

Personalised recommendations