Journal of Automated Reasoning

, Volume 41, Issue 2, pp 143–189 | Cite as

Differential Dynamic Logic for Hybrid Systems

  • André Platzer


Hybrid systems are models for complex physical systems and are defined as dynamical systems with interacting discrete transitions and continuous evolutions along differential equations. With the goal of developing a theoretical and practical foundation for deductive verification of hybrid systems, we introduce a dynamic logic for hybrid programs, which is a program notation for hybrid systems. As a verification technique that is suitable for automation, we introduce a free variable proof calculus with a novel combination of real-valued free variables and Skolemisation for lifting quantifier elimination for real arithmetic to dynamic logic. The calculus is compositional, i.e., it reduces properties of hybrid programs to properties of their parts. Our main result proves that this calculus axiomatises the transition behaviour of hybrid systems completely relative to differential equations. In a case study with cooperating traffic agents of the European Train Control System, we further show that our calculus is well-suited for verifying realistic hybrid systems with parametric system dynamics.


Dynamic logic Differential equations Sequent calculus Axiomatisation Automated theorem proving Verification of hybrid systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ábrahám-Mumm, E., Steffen, M., Hannemann, U.: Verification of hybrid systems: formalization and proof rules in PVS. In: ICECCS, pp. 48–57. IEEE Computer Society, Los Alamitos (2001). doi:10.1109/ICECCS.2001.930163 Google Scholar
  2. 2.
    Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking for real-time systems. In: LICS, pp. 414–425. IEEE Computer Society, Los Alamitos (1990)Google Scholar
  3. 3.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138(1), 3–34 (1995). doi:10.1016/0304-3975(94)00202-T zbMATHCrossRefGoogle Scholar
  4. 4.
    Anai, H., Weispfenning, V.: Reach set computations using real quantifier elimination. In: Benedetto, M.D.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC, LNCS, vol. 2034, pp. 63–76. Springer, Berlin (2001). doi:10.1007/3-540-45351-2_9 Google Scholar
  5. 5.
    Asarin, E., Dang, T., Girard, A.: Reachability analysis of nonlinear systems using conservative approximation. In: Maler, O., Pnueli, A. (eds.) Hybrid Systems: Computation and Control, 6th International Workshop, HSCC 2003 Prague, Czech Republic, April 3–5, 2003, Proceedings, LNCS, vol. 2623, pp. 20–35. Springer, Berlin (2003). doi:10.1007/3-540-36580-X_5 Google Scholar
  6. 6.
    Beckert, B.: Equality and other theories. In: D’Agostino, M., Gabbay, D., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods. Kluwer, Deventer (1999)Google Scholar
  7. 7.
    Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software: The KeY Approach, LNCS, vol. 4334. Springer, Berlin (2007)Google Scholar
  8. 8.
    Beckert, B., Platzer, A.: Dynamic logic with non-rigid functions: a basis for object-oriented program verification. In: Furbach, U., Shankar, N. (eds.) IJCAR, LNCS, vol. 4130, pp. 266–280. Springer, Berlin (2006)Google Scholar
  9. 9.
    Branicky, M.S.: Studies in hybrid systems: modeling, analysis, and control. Ph.D. thesis, Dept. Elec. Eng. and Computer Sci., Massachusetts Inst. Technol., Cambridge, MA (1995)Google Scholar
  10. 10.
    Branicky, M.S.: Universal computation and other capabilities of hybrid and continuous dynamical systems. Theor. Comput. Sci. 138(1), 67–100 (1995). doi:10.1016/0304-3975(94)00147-B zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Branicky, M.S., Borkar, V.S., Mitter, S.K.: A unified framework for hybrid control: model and optimal control theory. IEEE Trans. Automat. Contr. 43(1), 31–45 (1998). doi:10.1109/9.654885 zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Chaochen, Z., Ji, W., Ravn, A.P.: A formal description of hybrid systems. In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds.) Hybrid Systems, LNCS, vol. 1066, pp. 511–530. Springer, Berlin (1995)Google Scholar
  13. 13.
    Chutinan, A., Krogh, B.H.: Computational techniques for hybrid system verification. IEEE Trans. Automat. Contr. 48(1), 64–75 (2003). doi:10.1109/TAC.2002.806655 CrossRefMathSciNetGoogle Scholar
  14. 14.
    Clarke, E.M., Fehnker, A., Han, Z., Krogh, B.H., Ouaknine, J., Stursberg, O., Theobald, M.: Abstraction and counterexample-guided refinement in model checking of hybrid systems. Int. J. Found. Comput. Sci. 14(4), 583–604 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT, Cambridge (1999)Google Scholar
  16. 16.
    Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12(3), 299–328 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Cook, S.A.: Soundness and completeness of an axiom system for program verification. SIAM J. Comput. 7(1), 70–90 (1978). doi:10.1137/0207005 zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Damm, W., Hungar, H., Olderog, E.R.: Verification of cooperating travel agents. Int. J. Control 79(5), 395–421 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Damm, W., Mikschl, A., Oehlerking, J., Olderog, E.R., Pang, J., Platzer, A., Segelken, M., Wirtz, B.: Automating verification of cooperation, control, and design in traffic applications. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) Formal Methods and Hybrid Real-Time Systems, LNCS, vol. 4700, pp. 115–169. Springer, Berlin (2007)CrossRefGoogle Scholar
  20. 20.
    Davoren, J.M.: On hybrid systems and the modal μ-calculus. In: Antsaklis, P.J., Kohn, W., Lemmon, M.D., Nerode, A., Sastry, S. (eds.) Hybrid Systems, LNCS, vol. 1567, pp. 38–69. Springer, Berlin (1997). doi:10.1007/3-540-49163-5_3 Google Scholar
  21. 21.
    Davoren, J.M., Nerode, A.: Logics for hybrid systems. Proc. IEEE 88(7), 985–1010 (2000). doi:10.1109/5.871305 CrossRefGoogle Scholar
  22. 22.
    Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun. ACM 22(8), 465–476 (1979). doi:10.1145/359138.359142 zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. J. Autom. Reason. 31(1), 33–72 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize synchronization skeletons. Sci. Comput. Program. 2(3), 241–266 (1982)zbMATHCrossRefGoogle Scholar
  25. 25.
    Emerson, E.A., Halpern, J.Y.: “Sometimes” and “Not Never” revisited: on branching versus linear time temporal logic. J. Assoc. Comput. Mach. 33(1), 151–178 (1986)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Fitting, M.: First-Order Logic and Automated Theorem Proving, 2nd edn. Springer, New York (1996)zbMATHGoogle Scholar
  27. 27.
    Fitting, M., Mendelsohn, R.L.: First-Order Modal Logic. Kluwer, Norwell (1999)Google Scholar
  28. 28.
    Fränzle, M.: Analysis of hybrid systems: an ounce of realism can save an infinity of states. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL, LNCS, vol. 1683, pp. 126–140. Springer, Berlin (1999)Google Scholar
  29. 29.
    Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. In: Morari, M., Thiele, L. (eds.) HSCC, LNCS, vol. 3414, pp. 258–273. Springer, Berlin (2005). doi:10.1007/b106766 Google Scholar
  30. 30.
    Giese, M.: Incremental closure of free variable tableaux. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) IJCAR, LNCS, vol. 2083, pp. 545–560. Springer, Berlin (2001). doi:10.1007/3-540-45744-5_46 Google Scholar
  31. 31.
    Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Mon.hefte Math. Phys. 38, 173–198 (1931). doi:10.1007/BF01700692 CrossRefGoogle Scholar
  32. 32.
    Graça, D.S., Campagnolo, M.L., Buescu, J.: Computability with polynomial differential equations. Adv. Appl. Math. 40, 330–349 (2007)CrossRefGoogle Scholar
  33. 33.
    Hähnle, R., Schmitt, P.H.: The liberalized δ-rule in free variable semantic tableaux. J. Autom. Reason. 13(2), 211–221 (1994). doi:10.1007/BF00881956 zbMATHCrossRefGoogle Scholar
  34. 34.
    Harel, D.: First-Order Dynamic Logic. Springer, New York (1979)zbMATHGoogle Scholar
  35. 35.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT, Cambridge (2000)zbMATHGoogle Scholar
  36. 36.
    Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292. IEEE Computer Society, Los Alamitos (1996)Google Scholar
  37. 37.
    Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. In: LICS, pp. 394–406. IEEE Computer Society, Los Alamitos (1992)Google Scholar
  38. 38.
    Hutter, D., Langenstein, B., Sengler, C., Siekmann, J.H., Stephan, W., Wolpers, A.: Deduction in the verification support environment (VSE). In: Gaudel, M.C., Woodcock, J. (eds.) FME, LNCS, vol. 1051, pp. 268–286. Springer, Berlin (1996)Google Scholar
  39. 39.
    Jifeng, H.: From CSP to hybrid systems. In: Roscoe, A.W. (ed.) A Classical Mind: Essays in Honour of C. A. R. Hoare, pp. 171–189. Prentice Hall, Hertfordshire (1994)Google Scholar
  40. 40.
    Kesten, Y., Manna, Z., Pnueli, A.: Verification of clocked and hybrid systems. Acta Inf. 36(11), 837–912 (2000). doi:10.1007/s002360050177 zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Lafferriere, G., Pappas, G.J., Yovine, S.: A new class of decidable hybrid systems. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC, LNCS, vol. 1569, pp. 137–151. Springer, Berlin (1999)Google Scholar
  42. 42.
    Manna, Z., Sipma, H.: Deductive verification of hybrid systems using STeP. In: Henzinger, T.A., Sastry, S. (eds.) HSCC, LNCS, vol. 1386, pp. 305–318. Springer, Berlin (1998). doi:10.1007/3-540-64358-3_47 Google Scholar
  43. 43.
    Morayne, M.: On differentiability of Peano type functions. Colloq. Math. LIII, 129–132 (1987)MathSciNetGoogle Scholar
  44. 44.
    Mysore, V., Piazza, C., Mishra, B.: Algorithmic algebraic model checking II: Decidability of semi-algebraic model checking and its applications to systems biology. In: Peled, D., Tsay, Y.K. (eds.) ATVA, LNCS, vol. 3707, pp. 217–233. Springer, Berlin (2005)Google Scholar
  45. 45.
    Perko, L.: Differential equations and dynamical systems. Springer, New York (1991)zbMATHGoogle Scholar
  46. 46.
    Platzer, A.: Combining deduction and algebraic constraints for hybrid system analysis. In: Beckert, B. (ed.) VERIFY’07 at CADE, Bremen, Germany, CEUR Workshop Proceedings, vol. 259, pp. 164–178. (2007)Google Scholar
  47. 47.
    Platzer, A.: Differential dynamic logic for verifying parametric hybrid systems. In: Olivetti, N. (ed.) TABLEAUX, LNCS, vol. 4548, pp. 216–232. Springer, Berlin (2007)Google Scholar
  48. 48.
    Platzer, A.: A temporal dynamic logic for verifying hybrid system invariants. In: Artëmov, S.N., Nerode, A. (eds.) LFCS, LNCS, vol. 4514, pp. 457–471. Springer, Berlin (2007)Google Scholar
  49. 49.
    Platzer, A., Clarke, E.M.: The image computation problem in hybrid systems model checking. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC, LNCS, vol. 4416, pp. 473–486. Springer, Berlin (2007)Google Scholar
  50. 50.
    Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE, Piscataway (1977)Google Scholar
  51. 51.
    Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: FOCS, pp. 109–121. IEEE, Piscataway (1976)Google Scholar
  52. 52.
    Rönkkö, M., Ravn, A.P., Sere, K.: Hybrid action systems. Theor. Comput. Sci. 290(1), 937–973 (2003)zbMATHCrossRefGoogle Scholar
  53. 53.
    Sibirsky, K.S.: Introduction to Topological Dynamics. Noordhoff, Leyden (1975)zbMATHGoogle Scholar
  54. 54.
    Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn. University of California Press, Berkeley (1951)zbMATHGoogle Scholar
  55. 55.
    Tavernini, L.: Differential automata and their discrete simulators. Nonlinear Anal. 11(6), 665–683 (1987). doi:10.1016/0362-546X(87)90034-4 zbMATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    Tinelli, C.: Cooperation of background reasoners in theory reasoning by residue sharing. J. Autom. Reason. 30(1), 1–31 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    Tiwari, A.: Approximate reachability for linear systems. In: Maler, O., Pnueli, A. (eds.) Hybrid Systems: Computation and Control, 6th International Workshop, HSCC 2003 Prague, Czech Republic, April 3–5, 2003, Proceedings, LNCS, vol 2623, pp. 514–525. Springer, Berlin (2003). doi:10.1007/3-540-36580-X_37 Google Scholar
  58. 58.
    Walter, W.: Ordinary Differential Equations. Springer, Berlin (1998)zbMATHGoogle Scholar
  59. 59.
    Zhou, C., Ravn, A.P., Hansen, M.R.: An extended duration calculus for hybrid real-time systems. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) Hybrid Systems, LNCS, vol. 736, pp. 36–59. Springer, Berlin (1992)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Computing ScienceUniversity of OldenburgOldenburgGermany

Personalised recommendations