Journal of Automated Reasoning

, Volume 41, Issue 1, pp 61–98 | Cite as

Data Complexity of Query Answering in Expressive Description Logics via Tableaux

Article

Abstract

The logical foundations of the standard web ontology languages are provided by expressive Description Logics (DLs), such as \(\mathcal{SHIQ}\) and \(\mathcal{SHOIQ}\). In the Semantic Web and other domains, ontologies are increasingly seen also as a mechanism to access and query data repositories. This novel context poses an original combination of challenges that has not been addressed before: (i) sufficient expressive power of the DL to capture common data modelling constructs; (ii) well established and flexible query mechanisms such as those inspired by database technology; (iii) optimisation of inference techniques with respect to data size, which typically dominates the size of ontologies. This calls for investigating data complexity of query answering in expressive DLs. While the complexity of DLs has been studied extensively, few tight characterisations of data complexity were available, and the problem was still open for most DLs of the \(\mathcal{SH}\) family and for standard query languages like conjunctive queries and their extensions. We tackle this issue and prove a tight coNP upper bound for positive existential queries without transitive roles in \(\mathcal{SHOQ{\text{,}}\, SHIQ}\), and \(\mathcal{SHOI}\). We thus establish that, for a whole range of sublogics of \(\mathcal{SHOIQ}\) that contain \(\mathcal{AL}\), answering such queries has coNP-complete data complexity. We obtain our result by a novel tableaux-based algorithm for checking query entailment, which uses a modified blocking condition in the style of Carin. The algorithm is sound for \(\mathcal{SHOIQ}\), and shown to be complete for all considered proper sublogics in the \(\mathcal{SH}\) family.

Keywords

Data complexity Query answering Expressive description logics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Hanschke, P.: A schema for integrating concrete domains into concept languages. In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI’91), pp. 452–457, Sydney, 26 August 1991Google Scholar
  2. 2.
    Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Stud. Log. 69(1), 5–40 (2001)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  4. 4.
    Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams. Artif. Intell. 168(1–2), 70–118 (2005)MATHCrossRefGoogle Scholar
  5. 5.
    Borgida, A., Brachman, R.J.: Conceptual modeling with description logics. In: Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.) The Description Logic Handbook: Theory, Implementation and Applications, chap 10, pp. 349–372. Cambridge University Press, Cambridge (2003)Google Scholar
  6. 6.
    Calvanese, D., De Giacomo, G.: Expressive description logics. In: Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.) The Description Logic Handbook: Theory, Implementation and Applications, chap 5, pp. 178–218. Cambridge University Press, Cambridge (2003)Google Scholar
  7. 7.
    Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability of query containment under constraints. In: Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS’98), pp. 149–158. ACM, New York (1998)Google Scholar
  8. 8.
    Calvanese, D., Lenzerini, M., Nardi, D.: Unifying class-based representation formalisms. J. Artif. Intell. Res. 11, 199–240 (1999)MATHMathSciNetGoogle Scholar
  9. 9.
    Calvanese, D., De Giacomo, G., Lenzerini, M.: Answering queries using views over description logics knowledge bases. In: Proc. of the 17th Nat. Conf. on Artificial Intelligence (AAAI 2000), pp. 386–391. AAAI, Menlo Park (2000)Google Scholar
  10. 10.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite: tractable description logics for ontologies. In: Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005), pp. 602–607. AAAI, Menlo Park (2005)Google Scholar
  11. 11.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of query answering in description logics. In: Proc. of the 10th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2006), pp. 260–270, Lake District, 2–5 June 2006Google Scholar
  12. 12.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: the DL-Lite family. J. Autom. Reason. 39(3), 385–429 (2007)MATHCrossRefGoogle Scholar
  13. 13.
    Calvanese, D., Eiter, T., Ortiz, M.: Answering regular path queries in expressive description logics: an automata-theoretic approach. In: Proc. of the 22nd Nat. Conf. on Artificial Intelligence (AAAI 2007), pp. 391–396. AAAI, Menlo Park (2007)Google Scholar
  14. 14.
    Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational data bases. In: Proc. of the 9th ACM Symp. on Theory of Computing (STOC’77), pp. 77–90. ACM, New York (1977)Google Scholar
  15. 15.
    De Giacomo, G., Massacci, F.: Combining deduction and model checking into tableaux and algorithms for converse-PDL. Inf. Comput. 160(1–2), 117–137 (2000)CrossRefGoogle Scholar
  16. 16.
    Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: Deduction in concept languages: from subsumption to instance checking. J. Log. Comput. 4(4), 423–452 (1994)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Glimm, B., Horrocks, I., Sattler, U.: Conjunctive query answering for description logics with transitive roles. In: Proc. of the 2006 Description Logic Workshop (DL 2006), CEUR Electronic Workshop Proceedings, vol. 189. http://ceur-ws.org/Vol-189/ (2006)
  18. 18.
    Glimm, B., Horrocks, I., Sattler, U.: Conjunctive query entailment for \(\mathcal{SHOQ}\). In: Proc. of the 2007 Description Logic Workshop (DL 2007), CEUR Electronic Workshop Proceedings, vol. 250, pp. 65–75. http://ceur-ws.org/Vol-250/ (2007)
  19. 19.
    Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive query answering for the description logic \(\mathcal{SHIQ}\). J. Artif. Intell. Res. 31, 151–198 (2008)Google Scholar
  20. 20.
    Gottlob, G., Koch, C., Schulz, K.U.: Conjunctive queries over trees. In: Proc. of the 23rd ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2004), pp. 189–200. ACM, New York (2004)Google Scholar
  21. 21.
    Haarslev, V., Möller, R.: RACER system description. In: Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2001), Springer, Lecture Notes in Artificial Intelligence, vol. 2083, pp. 701–705. Springer, Heidelberg (2001)Google Scholar
  22. 22.
    Heflin, J., Hendler, J.: A portrait of the Semantic Web in action. IEEE Intell. Syst. 16(2), 54–59 (2001)CrossRefGoogle Scholar
  23. 23.
    Horrocks, I.: The FaCT system. In: de Swart, H. (ed.) Proc. of the 7th Int. Conf. on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX’98), Springer, Lecture Notes in Artificial Intelligence, vol. 1397, pp. 307–312. Springer, New York (1998)CrossRefGoogle Scholar
  24. 24.
    Horrocks, I., Sattler, U.: A tableau decision procedure for \(\mathcal{SHOIQ}\). J. Autom. Reason. 39(3), 249–276 (2007)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Horrocks, I., Tessaris, S.: A conjunctive query language for description logic ABoxes. In: Proc. of the 17th Nat. Conf. on Artificial Intelligence (AAAI 2000), pp. 399–404 (2000)Google Scholar
  26. 26.
    Horrocks, I., Sattler, U., Tobies, S.: Reasoning with individuals for the description logic \(\mathcal{SHIQ}\). In: McAllester, D. (ed.) Proc. of the 17th Int. Conf. on Automated Deduction (CADE 2000), vol. 1831, pp. 482–496. Springer, Lecture Notes in Computer Science. Springer, New York (2000)Google Scholar
  27. 27.
    Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From \(\mathcal{SHIQ}\) and RDF to OWL: the making of a web ontology language. J. Web Semant. 1(1), 7–26 (2003)Google Scholar
  28. 28.
    Hustadt, U., Motik, B., Sattler, U.: A decomposition rule for decision procedures by resolution-based calculi. In: Proc. of the 11th Int. Conf. on Logic for Programming, Artificial Intelligence and Reasoning (LPAR 2004), pp. 21–35, Montevideo, 14–18 March 2005 (2004)Google Scholar
  29. 29.
    Hustadt, U., Motik, B., Sattler, U.: Reducing \(\mathcal{SHIQ}\)-description logic to disjunctive datalog programs. In: Proc. of the 9th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2004), pp. 152–162, Whistler, 2–5 June 2004Google Scholar
  30. 30.
    Hustadt, U., Motik, B., Sattler, U.: Data complexity of reasoning in very expressive description logics. In: Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pp. 466–471, Edinburgh, 30 July–5 August 2005Google Scholar
  31. 31.
    Kazakov, Y., Motik, B.: A resolution-based decision procedure for \(\mathcal{SHOIQ}\). J. Autom. Reason. 40(2–3), 89–116 (2008)MATHCrossRefGoogle Scholar
  32. 32.
    Lenzerini, M.: Data integration: a theoretical perspective. In: Proc. of the 21st ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2002), pp. 233–246. ACM, New York (2002)Google Scholar
  33. 33.
    Levy, A.Y., Rousset, M.C.: Combining Horn rules and description logics in CARIN. Artif. Intell. 104(1–2), 165–209 (1998)MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Lutz, C.: Description logics with concrete domains: a survey. In: Balbiani, P., Suzuki, N.Y., Wolter, F., Zakharyaschev, M. (eds.) Advances in Modal Logics, vol. 4. King’s College, Edmonton (2003)Google Scholar
  35. 35.
    Lutz, C.: Inverse roles make conjunctive queries hard. In: Proc. of the 2007 Description Logic Workshop (DL 2007), CEUR Electronic Workshop Proceedings, vol. 250, pp. 100–111. http://ceur-ws.org/Vol-250/ (2007)
  36. 36.
    Motik, B., Shearer, R., Horrocks, I.: Optimized reasoning in description logics using hypertableaux. In: Proc. of the 21st Int. Conf. on Automated Deduction (CADE 2007), Springer, Lecture Notes in Computer Science, vol. 4603, pp. 67–83. Springer, Heidelberg (2007)Google Scholar
  37. 37.
    Ortiz, M.M., Calvanese, D., Eiter, T.: Characterizing data complexity for conjunctive query answering in expressive description logics. In: Proc. of the 21st Nat. Conf. on Artificial Intelligence (AAAI 2006), pp. 275–280. AAAI, Menlo Park (2006)Google Scholar
  38. 38.
    Patel-Schneider, P., Hayes, P., Horrocks, I.: OWL Web Ontology Language semantics and abstract syntax. W3C Recommendation. http://www.w3.org/TR/owl-semantics/
  39. 39.
    Schaerf, A.: On the complexity of the instance checking problem in concept languages with existential quantification. J. Intell. Inf. Sys. 2, 265–278 (1993)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Schaerf, A.: Reasoning with individuals in concept languages. Data Knowl. Eng. 13(2), 141–176 (1994)CrossRefGoogle Scholar
  41. 41.
    Tobies, S.: The complexity of reasoning with cardinality restrictions and nominals in expressive description logics. J. Artif. Intell. Res. 12, 199–217 (2000)MATHMathSciNetGoogle Scholar
  42. 42.
    Tobies, S.: Complexity results and practical algorithms for logics in knowledge representation. Ph.D. thesis, LuFG Theoretical Computer Science, RWTH-Aachen, Germany (2001)Google Scholar
  43. 43.
    Vardi, M.Y.: The complexity of relational query languages. In: Proc. of the 14th ACM SIGACT Symp. on Theory of Computing (STOC’82), pp. 137–146. ACM, New York (1982)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Magdalena Ortiz
    • 1
  • Diego Calvanese
    • 2
  • Thomas Eiter
    • 1
  1. 1.Institute of Information SystemsVienna University of TechnologyViennaAustria
  2. 2.Faculty of Computer ScienceFree University of Bozen-BolzanoBolzanoItaly

Personalised recommendations