Journal of Automated Reasoning

, Volume 40, Issue 2–3, pp 133–177 | Cite as

A Logical Characterization of Forward and Backward Chaining in the Inverse Method

Article

Abstract

The inverse method is a generalization of resolution that can be applied to non-classical logics. We have recently shown how Andreoli’s focusing strategy can be adapted for the inverse method in linear logic. In this paper we introduce the notion of focusing bias for atoms and show that it gives rise to forward and backward chaining, generalizing both hyperresolution (forward) and SLD resolution (backward) on the Horn fragment. A key feature of our characterization is the structural, rather than purely operational, explanation for forward and backward chaining. A search procedure like the inverse method is thus able to perform both operations as appropriate, even simultaneously. We also present experimental results and an evaluation of the practical benefits of biased atoms for a number of examples from different problem domains.

Keywords

Inverse method Focusing SLD resolution Hyperresolution Intuitionistic linear logic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. Log. Comput. 2(3), 297–347 (1992)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Andreoli, J.-M.: Focussing and proof construction. Ann. Pure Appl. Logic 107, 131–163 (2001)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bozzano, M., Delzanno, G., Martelli, M.: Model checking linear logic specifications. TPLP 4(4–6), 573–619 (2004)MATHMathSciNetGoogle Scholar
  4. 4.
    Cervesato, I., Pfenning, F., Walker, D., Watkins, K.: A concurrent logical framework I & II. Technical report CMU-CS-02-101 and 102, Department of Computer Science, Carnegie Mellon University (2002) (revised May 2003)Google Scholar
  5. 5.
    Chang, B.-Y.E., Chaudhuri, K., Pfenning, F.: A judgmental analysis of linear logic. Technical report CMU-CS-03-131R, Carnegie Mellon University (December 2003)Google Scholar
  6. 6.
    Chaudhuri, K.: The focused inverse method for linear logic. Ph.D. thesis, Carnegie Mellon University (December 2006) (Also available as Technical Report CMU-CS-06-161)Google Scholar
  7. 7.
    Chaudhuri, K., Pfenning, F.: A focusing inverse method theorem prover for first-order linear logic. In: Proceedings of CADE-20, pp. 69–83. Tallinn, Estonia, Springer-Verlag LNAI-3632 (July 2005)Google Scholar
  8. 8.
    Chaudhuri, K., Pfenning F.: Focusing the inverse method for linear logic. In: Ong, L. (ed.) Proceedings of CSL 2005, pp. 200–215. Oxford, UK, Springer-Verlag LNCS-3634 (August 2005)Google Scholar
  9. 9.
    Chaudhuri, K., Pfenning, F., Price, G.: A logical characterization of forward and backward chaining in the inverse method. In: Furbach, U., Shankar, N. (eds.) Proceedings of the 3rd International Joint Conference on Automated Reasoning (IJCAR’06), Seattle, WA, Springer-Verlag LNCS 4130 (August 2006)Google Scholar
  10. 10.
    Danos, V., Joinet, J.-B., Schellinx, H.: LKQ and LKT: sequent calculi for second order logic based upon dual linear decompositions of classical implication. In: Girard, J.-Y., Lafont, Y. (eds.) Proceedings of the Workshop on Linear Logic, London Mathematical Society Lecture Notes vol. 222, pp. 211–224. Cambridge University Press (1995)Google Scholar
  11. 11.
    Danos, V., Joinet, J.-B., Schellinx, H.: A new deconstructive logic: linear logic. J. Symb. Log. 62(3), 755–807 (1997)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Degtyarev, A., Voronkov, A.: The inverse method. In: Robinson, J. A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 179–272. MIT Press (September 2001)Google Scholar
  13. 13.
    Gentzen, G.: Untersuchungen über das logische Schließen. Math. Z. 39, 176–210, 405–431 (1935) (English translation in Szabo, M. E., (ed.) The collected papers of Gerhard Gentzen, pp. 68–131, North-Holland 1969)Google Scholar
  14. 14.
    Girard, J.-Y.: Locus solum: from the rules of logic to the logic of rules. Math. Struct. Comput. Sci. 11, 301–506 (2001)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Hodas, J. S., Miller, D.: Logic programming in a fragment of intuitionistic linear logic. Inf. Comput. 110(2), 327–365 (1994)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Howe, J.M.: Proof search issues in some non-classical logics. PhD thesis, University of St. Andrews (September 1998)Google Scholar
  17. 17.
    Jagadeesan, R., Nadathur, G., Saraswat, V.: Testing concurrent sytems: an interpretation of intuitionistic logic. In: Proceedings of the 25th Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pp. 517–528. Springer-Verlag LNCS 3821 (2005)Google Scholar
  18. 18.
    Kowalski, R., Kuehner, D.: Linear resolution with selection function. Artif. Intell. 2, 227–260, (1971)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Liang, C., Miller, D.: Focusing and polarization in intuitionistic logic. Computer Science Logic 451–465 (2007)Google Scholar
  20. 20.
    Lincoln, P., Mitchell, J. C., Scedrov, A., Shankar, N.: Decision problems for propositional linear logic. Ann. Pure Appl. Logic 56, 239–311 (1992)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Mantel, H., Otten, J.: LinTAP: a tableau prover for linear logic. In:  Murray, A. (ed.) International Conference TABLEAUX’99, pp. 217–231, New York, Springer-Verlag LNAI 1617 (June 1999)Google Scholar
  22. 22.
    Miller, D.: A multiple-conclusion meta-logic. In: Abramsky, S. (ed.) Ninth Annual Symposium on Logic in Computer Science, pp. 272–281, Paris, France, IEEE Computer Society Press (July 1994)Google Scholar
  23. 23.
    Pfenning, F.: Structural cut elimination in linear logic. Technical report CMU-CS-94-222, Carnegie Mellon University (December 1994)Google Scholar
  24. 24.
    Ramakrishnan, R., Ullman, J.D.: A survey of deductive database systems. J. Log. Program. 23(2), 125–145 (1995)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Rohmer, J., Lescoeur, R., Kerisit, J.: The Alexander method: a technique for the processing of recursive atoms in deductive databases. New Gener. Comput. 4, 522–588 (1986)CrossRefGoogle Scholar
  26. 26.
    Sahlin, D., Franzén, T., Haridi, S.: An intuitionistic predicate logic theorem prover. J. Log. Comput. 2(5), 619–656 (1992)MATHCrossRefGoogle Scholar
  27. 27.
    Tammet, T.: Resolution, inverse method and the sequent calculus. In: Proceedings of KGC’97, pp. 65–83. Springer-Verlag LNCS 1289 (1997)Google Scholar
  28. 28.
    Tamura, N.: A Linear Logic Prover (llprover). At: http://bach.istc.kobe-u.ac.jp/llprover (1999)
  29. 29.
    Watkins, K., Cervesato, I., Pfenning, F., Walker, D.: A concurrent logical framework I: judgments and properties. Technical report CMU-CS-02-101, Carnegie Mellon University (March 2002)Google Scholar
  30. 30.
    Zeilberger, N.: On the unity of duality. In: Ann. Pure Appl. Log., Special Issue on “Classical Logic and Computation.” (2008) (to appear)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Laboratoire d’Informatique (LIX) École PolytechniquePalaiseauFrance
  2. 2.Department of Computer ScienceCarnegie Mellon UniversityPittsburgUSA

Personalised recommendations