Journal of Automated Reasoning

, Volume 40, Issue 2–3, pp 195–220 | Cite as

Matrix Interpretations for Proving Termination of Term Rewriting

Article

Abstract

We present a new method for automatically proving termination of term rewriting. It is based on the well-known idea of interpretation of terms where every rewrite step causes a decrease, but instead of the usual natural numbers we use vectors of natural numbers, ordered by a particular nontotal well-founded ordering. Function symbols are interpreted by linear mappings represented by matrices. This method allows us to prove termination and relative termination. A modification of the latter, in which strict steps are only allowed at the top, turns out to be helpful in combination with the dependency pair transformation. By bounding the dimension and the matrix coefficients, the search problem becomes finite. Our implementation transforms it to a Boolean satisfiability problem (SAT), to be solved by a state-of-the-art SAT solver.

Keywords

Term rewriting Termination Matrix interpretations Satisfiability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comp. Sci. 236, 133–178 (2000)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Termination problems data base. http://www.lri.fr/~marche/tpdb/
  3. 3.
  4. 4.
    Dershowitz, N.: Termination of linear rewriting systems. In: Even, S., Kariv, O. (eds.) Proc. 8th Int. Coll. on Automata, Languages and Programming (ICALP-81). Lecture Notes in Computer Science, vol. 115, pp. 448–458. Springer (1981)Google Scholar
  5. 5.
    Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) Proc. 8th Int. Conf. Theory and Applications of Satisfiability Testing SAT 2005. Lecture Notes in Computer Science, vol. 3569, pp. 61–75. Springer (2005). Tool: http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/
  6. 6.
    Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. In: Proceedings of the 3rd International Joint Conference on Automated Reasoning (IJCAR ’06). Lecture Notes in Computer Science, vol. 4130, pp. 574–588. Springer (2006)Google Scholar
  7. 7.
    Giesl, J., Schneider-Kamp, P., Thiemann, R.: Aprove 1.2: automatic termination proofs in the dependency pair framework. In: Proceedings of the 3rd International Joint Conference on Automated Reasoning (IJCAR ’06). Lecture Notes in Computer Science, vol. 4130, pp. 281– 286. Springer (2006)Google Scholar
  8. 8.
    Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework: combining techniques for automated termination proofs. In: Proceedings of the 11th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2004). Lecture Notes in Computer Science, vol. 3452, pp. 301–331. Springer (2005)Google Scholar
  9. 9.
    Hirokawa, N., Middeldorp, A.: Dependency pairs revisited. In: van Oostrom, V. (ed.) Proceedings of the 15th Conference on Rewriting Techniques and Applications (RTA). Lecture Notes in Computer Science, vol. 3091, pp. 249–268. Springer (2004)Google Scholar
  10. 10.
    Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. Inf. Comput. 199, 172–199 (2005)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hirokawa, N., Middeldorp, A.: Tyrolean termination tool. In: Giesl, J. (ed.) Proceedings of the 16th Conference on Rewriting Techniques and Applications (RTA). Lecture Notes in Computer Science, vol. 3467, pp. 175–184. Springer (2005)Google Scholar
  12. 12.
    Hirokawa, N., Middeldorp, A.: Uncurrying for termination. In: Proceedings of 3rd International Workshop on Higher-Order Rewriting (HOR), pp. 19–24. (2006)Google Scholar
  13. 13.
    Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations (preliminary version). In: Dershowitz, N. (ed.) Proceedings of the 3rd Conference on Rewriting Techniques and Applications (RTA). Lecture Notes in Computer Science, vol. 355, pp, 167–177. Springer (1989)Google Scholar
  14. 14.
    Hofbauer, D., Waldmann, J.: Proving termination with matrix interpretations. In: Pfenning, F. (ed.) Proceedings of the 17th Conference on Rewriting Techniques and Applications (RTA). Lecture Notes in Computer Science, vol. 4098, pp. 328–342. Springer (2006)Google Scholar
  15. 15.
    Hofbauer, D., Waldmann, J.: Termination of {aabc, bbac, ccab}. Inf. Process. Lett. 98(4), 156–158 (2006)CrossRefMathSciNetGoogle Scholar
  16. 16.
    The RTA list of open problems. http://www.lsv.ens-cachan.fr/rtaloop/
  17. 17.
    Full results of Jambox. http://joerg.endrullis.de/jar07/
  18. 18.
    Zantema, H.: Termination of term rewriting: interpretation and type elimination. J. Symb. Comput. 17, 23–50 (1994)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Zantema, H.: Termination. In: Term Rewriting Systems, by Terese, pp. 181–259. Cambridge University Press (2003)Google Scholar
  20. 20.
    Zantema, H.: Reducing right-hand sides for termination. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on the Road to Infinity: Essays Dedicated to Jan Willem Klop on the Occasion of His 60th Birthday. Lecture Notes in Computer Science, vol. 3838, pp. 173–197. Springer (2005)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Jörg Endrullis
    • 1
  • Johannes Waldmann
    • 2
  • Hans Zantema
    • 3
  1. 1.Department of Computer ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
  2. 2.Hochschule für Technik, Wirtschaft und Kultur (FH) LeipzigLeipzigGermany
  3. 3.Department of Computer ScienceTechnische Universiteit EindhovenEindhovenThe Netherlands

Personalised recommendations