Advertisement

Journal of Automated Reasoning

, Volume 39, Issue 3, pp 249–276 | Cite as

A Tableau Decision Procedure for \(\mathcal{SHOIQ}\)

  • Ian Horrocks
  • Ulrike Sattler
Article

Abstract

OWL DL, a new W3C ontology language recommendation, is based on the expressive description logic \(\mathcal{SHOIN}\). Although the ontology consistency problem for \(\mathcal{SHOIN}\) is known to be decidable, up to now there has been no known “practical” decision procedure, that is, a goal-directed procedure that is likely to perform well with realistic ontology derived problems. We present such a decision procedure for \(\mathcal{SHOIQ}\), a slightly more expressive logic than \(\mathcal{SHOIN}\), extending the well-known algorithm for \(\mathcal{SHIQ}\), which is the basis for several highly successful implementations.

Keywords

Description logic Decision procedures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F., (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge, MA (2003)MATHGoogle Scholar
  2. 2.
    Baader, F., Hanschke, P.: A schema for integrating concrete domains into concept languages. In: Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI’91), pp. 452–457 (1991)Google Scholar
  3. 3.
    Baader, F., Hollunder, B.: A terminological knowledge representation system with complete inference algorithms. In: Proceedings of the First International Workshop on Processing Declarative Knowledge. Lecture Notes in Computer Science, vol. 572, pp. 67–85. Springer, Berlin Heidelberg New York (1991)Google Scholar
  4. 4.
    Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Stud. Log. 69(1), 5–40 (2001)MATHCrossRefGoogle Scholar
  5. 5.
    Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F., Stein, L.A.: OWL Web ontology language reference. W3C Recommendation. Available at http://www.w3.org/TR/owl-ref/ (2004)
  6. 6.
    Blackburn, P., Seligman, J.: Hybrid languages. J. Logic Lang. Inf. 4, 251–272 (1995)MATHCrossRefGoogle Scholar
  7. 7.
    Brachman, R.J., McGuinness, D.L., Patel-Schneider, P.F., Resnick, L.A., Borgida, A.: Living with CLASSIC: when and how to use a KL-ONE-like language. In: Sowa, J.F. (ed.) Principles of Semantic Networks, pp. 401–456. Morgan Kaufmann, Los Altos, CA (1991)Google Scholar
  8. 8.
    Bresciani, P., Franconi, E., Tessaris, S.: Implementing and testing expressive description logics: preliminary report. In: Proceedings of the 1995 Description Logic Workshop (DL’95), pp. 131–139 (1995)Google Scholar
  9. 9.
    Buchheit, M., Donini, F.M., Schaerf, A.: Decidable reasoning in terminological knowledge representation systems. J. Artif. Intell. Res. 1, 109–138 (1993)MATHGoogle Scholar
  10. 10.
    Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Description logic framework for information integration. In: Proceedings of the 6th International Conference on Principles of Knowledge Representation and Reasoning (KR’98), pp. 2–13. Morgan Kaufmann, Los Altos, CA (1998)Google Scholar
  11. 11.
    De Giacomo, G.: Decidability of class-based knowledge representation formalisms. Ph.D. Thesis, Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza” (1995)Google Scholar
  12. 12.
    De Giacomo, G., Lenzerini, M.: Boosting the correspondence between description logics and propositional dynamic logics (extended abstract). In: Proceedings of the 12th National Conference on Artificial Intelligence (AAAI-94). AAAI Press, Menlo Park, CA (1994)Google Scholar
  13. 13.
    De Giacomo, G., Lenzerini, M.: TBox and ABox reasoning in expressive description logics. In: Proceedings of the 5th International Conference on the Principles of Knowledge Representation and Reasoning (KR’96), pp. 316–327. Morgan Kaufmann, Los Altos, CA (1996)Google Scholar
  14. 14.
    Donini, F.M., Lenzerini, M., Nardi, D.: Using terminological reasoning in hybrid systems. AI Commun. – Eur. J. Artif. Intell. 3(3), 128–138 (1990)Google Scholar
  15. 15.
    Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput. Syst. Sci. 18, 194–211 (1979)MATHCrossRefGoogle Scholar
  16. 16.
    Gardiner, T., Tsarkov, D., Horrocks, I.: Framework for an automated comparison of description logic reasoners. In: Proceedings of the 2006 International Semantic Web Conference (ISWC 2006). Lecture Notes in Computer Science, vol. 4273, pp. 654–667. Springer, Berlin Heidelberg New York (2006)Google Scholar
  17. 17.
    Grädel, E.: Why are modal logics so robustly decidable? In: Paun, G., Rozenberg, G., Salomaa, A. (eds.) Current Trends in Theoretical Computer Science: Entering the 21st Century, pp. 393–408. World Scientific, Singapore (2001)Google Scholar
  18. 18.
    Haarslev, V., Möller, R.,: The description logic \(\mathcal{ALCNH}_{R+}\) extended with concrete domains: a practically motivated approach. In: Proceedings of the International Joint Conference on Automated Reasoning (IJCAR 2001). Lecture Notes in Artificial Intelligence, vol. 2083, pp. 29–44. Springer, Berlin Heidelberg New York (2001a)Google Scholar
  19. 19.
    Haarslev, V., Möller, R.: RACER System description. In: Proceedings of the International Joint Conference on Automated Reasoning (IJCAR 2001). Lecture Notes in Artificial Intelligence, vol. 2083, pp. 701–705. Springer, Berlin Heidelberg New York (2001b)Google Scholar
  20. 20.
    Hladik, J., Model, J.: Tableau systems for \(\mathcal{SHIO}\) and \(\mathcal{SHIQ}\). In: Proceedings of the 2004 Description Logic Workshop (DL 2004). CEUR. Available from ceur-ws.org (2004)Google Scholar
  21. 21.
    Hollunder, B., Baader, F.: Qualifying number restrictions in concept languages. Technical Report RR-91-03, Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Kaiserslautern (Germany). An abridged version appeared in Proceedings of the 2nd International Conference on the Principles of Knowledge Representation and Reasoning (KR’91) (1991)Google Scholar
  22. 22.
    Horrocks, I., Patel-Schneider, P.F.: FaCT and DLP: Automated reasoning with analytic tableaux and related methods. In: Proceedings of the 2nd International Conference on Analytic Tableaux and Related Methods (TABLEAUX’98). Lecture Notes in Artificial Intelligence, vol. 1397, pp. 27–30. Springer, Berlin Heidelberg New York (1998)Google Scholar
  23. 23.
    Horrocks, I., Patel-Schneider, P.F.: Optimizing description logic subsumption. J. Log. Comput. 9(3), 267–293 (1999)MATHCrossRefGoogle Scholar
  24. 24.
    Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From \(\mathcal{SHIQ}\) and RDF to OWL: the making of a web ontology language. J. Web Semantics 1(1), 7–26 (2003)Google Scholar
  25. 25.
    Horrocks, I., Sattler, U.: Ontology reasoning in the \(\mathcal{SHOQ}\)(D) description logic. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI 2001), pp. 199–204. Morgan Kaufmann, Los Altos, CA (2001)Google Scholar
  26. 26.
    Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description logics. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) Proceedings of the 6th International Conference on Logic for Programming and Automated Reasoning (LPAR’99). Lecture Notes in Artificial Intelligence, vol. 1705, pp. 161–180. Springer, Berlin Heidelberg New York (1999)Google Scholar
  27. 27.
    Horrocks, I., Sattler, U., Tobies, S.: Reasoning with individuals for the description logic \(\mathcal{SHIQ}\). In: McAllester, D. (ed.) Proceedings of the 17th International Conference on Automated Deduction (CADE 2000). Lecture Notes in Computer Science, vol. 1831, pp. 482–496. Springer, Berlin Heidelberg New York (2000)Google Scholar
  28. 28.
    McGuinness, D.L., Wright, J.R.: An industrial strength description logic-based configuration platform. IEEE Intell. Syst. 69–77 (1998)Google Scholar
  29. 29.
    Pacholski, L., Szwast, W., Tendera, L.: Complexity of two-variable logic with counting. In: Proceedings of the 12th IEEE Symposium on Logic in Computer Science (LICS’97), pp. 318–327. IEEE Computer Society Press, Los Alamitos, CA (1997)Google Scholar
  30. 30.
    Pan, J., Horrocks, I.: Web ontology reasoning with datatype groups. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) Proc. of the 2003 International Semantic Web Conference (ISWC 2003). Lecture Notes in Computer Science, vol. 2870, pp. 47–63. Springer, Berlin Heidelberg New York (2003)Google Scholar
  31. 31.
    Patel-Schneider, P.F., Owsnicki-Klew, B., Kobsa, A., Guarino, N., MacGregor, R., Mark, W.S., McGuinness, D., Nebel, B., Schmiedel, A., Yen, J.: Term subsumption languages in knowledge representation. AI Mag. 11(2), 16–23 (1990)Google Scholar
  32. 32.
    Schaerf, A.: Reasoning with individuals in concept languages. Data Knowl. Eng. 13(2), 141–176 (1994)CrossRefGoogle Scholar
  33. 33.
    Schild, K.: A correspondence theory for terminological logics: preliminary report. In: Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI’91), pp. 466–471. Morgan Kaufmann, Los Altos, CA (1991)Google Scholar
  34. 34.
    Sirin, E., Grau, B.C., Parsia, B.: From wine to water: optimizing description logic reasoning for nominals. In: Proceedings of the 10th International Conference on Principles of Knowledge Representation and Reasoning (KR 2006), pp. 90–99. AAAI Press (2006)Google Scholar
  35. 35.
    Sirin, E., Parsia, B., Cuenca, B. Grau, Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. J. Web Semantics 5(2), 51–53 (2007)Google Scholar
  36. 36.
    Tobies, S.: The complexity of reasoning with cardinality restrictions and nominals in expressive description logics. J. Artif. Intell. Res. 12, 199–217 (2000)MATHGoogle Scholar
  37. 37.
    Tobies, S.: Complexity results and practical algorithms for logics in knowledge representation. Ph.D. thesis, LuFG Theoretical Computer Science, RWTH-Aachen, Germany (2001)Google Scholar
  38. 38.
    Tsarkov, D., Horrocks, I.: Ordering heuristics for description logic reasoning. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 609–614. Morgan Kaufmann, Los Altos (2005)Google Scholar
  39. 39.
    Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: system description. In: Proceedings of the International Joint Conference on Automated Reasoning (IJCAR 2006). Lecture Notes in Artificial Intelligence, vol. 4130, pp. 292–297. Springer, Berlin Heidelberg New York (2006)Google Scholar
  40. 40.
    Vardi, M.Y.: Why is modal logic so robustly decidable. In: DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 31, pp. 149–184. American Mathematical Society, Providence, RI (1997)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of ManchesterManchesterUK

Personalised recommendations