Journal of Automated Reasoning

, Volume 39, Issue 2, pp 109–139 | Cite as

User Interaction with the Matita Proof Assistant

  • Andrea Asperti
  • Claudio Sacerdoti Coen
  • Enrico Tassi
  • Stefano Zacchiroli
Article

Abstract

Matita is a new, document-centric, tactic-based interactive theorem prover. This paper focuses on some of the distinctive features of the user interaction with Matita, characterized mostly by the organization of the library as a searchable knowledge base, the emphasis on a high-quality notational rendering, and the complex interplay between syntax, presentation, and semantics.

Keywords

Proof assistant Interactive theorem proving Digital libraries XML Mathematical knowledge management Authoring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aitken, S.: Problem solving in interactive proof: a knowledge-modelling approach. In: European Conference on Artificial Intelligence (ECAI), pp. 335–339 (1996)Google Scholar
  2. 2.
    Aitken, S., Gray, P., Melham, T., Thomas, M.: Interactive theorem proving: an empirical study of user activity. J. Symb. Comput. 25(2), 263–284 (1998)CrossRefGoogle Scholar
  3. 3.
    Asperti, A., Guidi, F., Padovani, L., Sacerdoti Coen, C., Schena, I.: Mathematical knowledge management in HELM. Ann. Math. Artif. Intell. 38(1–3), 27–46 (2003)MATHCrossRefGoogle Scholar
  4. 4.
    Asperti, A., Guidi, F., Sacerdoti Coen, C., Tassi, E., Zacchiroli, S.: A content based mathematical search engine: Whelp. In: Post-proceedings of the Types 2004 International Conference. LNCS, vol. 3839, pp. 17–32 (2004)Google Scholar
  5. 5.
    Asperti, A., Padovani, L., Sacerdoti Coen, C., Schena, I.: Content-centric logical environments. Short presentation at the Fifteenth IEEE Symposium on Logic in Computer Science, 2000Google Scholar
  6. 6.
    Asperti, A., Padovani, L., Sacerdoti Coen, C., Schena, I.: XML, stylesheets and the re-mathematization of formal content. In: Proceedings of EXTREME Markup Languages, 2001Google Scholar
  7. 7.
    Asperti, A., Wegner, B.: An approach to machine-understandable representation of the mathematical information in digital documents. In: Electronic Information and Communication in Mathematics. LNCS, vol. 2730, pp. 14–23 (2003)Google Scholar
  8. 8.
    Aspinall, D.: Proof general: A generic tool for proof development. In: Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2000. LNCS, vol. 1785 (2000)Google Scholar
  9. 9.
    Bancerek, G.: On the structure of Mizar types. Electron. Notes Theor. Comput. Sci. 85(7), (2003)Google Scholar
  10. 10.
    Bancerek, G., Rudnicki, P.: Information retrieval in MML. In: Proceedings of the Mathematical Knowledge 2003. LNCS, vol. 2594 (2003)Google Scholar
  11. 11.
    Bertot, Y.: The CtCoq System: design and architecture. Form. Asp. Comput. 11, 225–243 (1999)CrossRefGoogle Scholar
  12. 12.
    Bertot, Y., Kahn, G., Théry, L.: Proof by pointing. In: Symposium on Theoretical Aspects Computer Software (STACS). LNCS, vol. 789 (1994)Google Scholar
  13. 13.
    Buchberger, B., Craciun, A., Jebelean, T., Kovacs, L., Kutsia, T., Nakagawa, K., Piroi, F., Popov, N., Robu, J., Rosenkranz, M., Windsteiger, W.: Theorema: towards computer-aided mathematical theory exploration. Journal of Applied Logic. 4(4), 470–504 (December 2006)MATHCrossRefGoogle Scholar
  14. 14.
    Colton, S.: Automated Theory Formation in Pure Mathematics. Springer, Berlin Heidelberg New York (2002)Google Scholar
  15. 15.
    Coquand, T., Pollack, R., Takeyama, M.: A logical framework with dependently typed records. Fundam. Inform. 65(1-2), 113–134 (2005)MATHGoogle Scholar
  16. 16.
    Cruz-Filipe, L., Geuvers, H., Wiedijk, F.: C-CoRN, the constructive coq repository at Nijmegen. In: MKM, pp. 88–103 (2004)Google Scholar
  17. 17.
    Gordon, M.J.C., Milner, R., Wadsworth, C.P.: Edinburgh LCF: a mechanised logic of computation. In: LNCS, vol. 78 (1979)Google Scholar
  18. 18.
    Hutter, D.: Towards a generic management of change. In: Workshop on Computer-supported Mathematical Theory Development, IJCAR (2004)Google Scholar
  19. 19.
    Kamareddine, F., Nederpelt, R.: A Refinement of de Bruijns formal language of mathematics. J. Logic, Lang. Inf. 13(3), 287–340 (2004)MATHCrossRefGoogle Scholar
  20. 20.
    Luo, Z.: Coercive subtyping. J. Log. Comput. 9(1), 105–130 (1999)MATHCrossRefGoogle Scholar
  21. 21.
    McCasland, R.L., Bundy, A., Smith, P.F.: Ascertaining mathematical theorems. Electron. Notes Theor. Comput. Sci. 151(1), 21–38 (2006)CrossRefGoogle Scholar
  22. 22.
    McCune, W., Wos, L.: Otter-The CADE-13 competition incarnations. J. Autom. Reason. 18(2), 211–220 (1997)CrossRefGoogle Scholar
  23. 23.
    Nieuwenhuis, R., Rubio, A.: Paramodulation-based Theorem Proving. vol. 1, pp. 371–443. Elsevier and MIT Press. ISBN-0-262-18223-8 (2001)Google Scholar
  24. 24.
    Obua, S.: Conservative overloading in higher-order logic. In: Rewriting Techniques and Applications. LNCS, vol. 4098, pp. 212–226 (July 2006)Google Scholar
  25. 25.
    Padovani, L.: MathML formatting. PhD thesis, University of Bologna (2003)Google Scholar
  26. 26.
    Padovani, L., Zacchiroli, S.: From notation to semantics: there and back again. In: Proceedings of Mathematical Knowledge Management 2006. Lectures Notes in Artificial Intelligence, vol. 3119, pp. 194–207 (2006)Google Scholar
  27. 27.
    Sacerdoti Coen, C.: From proof-assistans to distributed libraries of mathematics: tips and pitfalls. In: Proceedings of the Mathematical Knowledge Management 2003. LNCS, vol. 2594, pp. 30–44 (2003)Google Scholar
  28. 28.
    Sacerdoti Coen, C.: Mathematical knowledge management and interactive theorem proving. PhD thesis, University of Bologna (2004)Google Scholar
  29. 29.
    Sacerdoti Coen, C., Tassi, E., Zacchiroli, S.: Tinycals: step by step tacticals. In: Proceedings of User Interface for Theorem Provers. ENTCS 174(2), pp. 125–142 ISSN: 1571–0661 (May 2007)Google Scholar
  30. 30.
    Sacerdoti Coen, C., Zacchiroli, S.: Efficient ambiguous parsing of mathematical formulae. In: Proceedings of Mathematical Knowledge Management 2004. LNCS, vol. 3119, pp. 347–362 (2004)Google Scholar
  31. 31.
    Shneiderman, B.: Direct manipulation for comprehensible, predictable and controllable user interfaces. In: Proceedings of the 2nd International Conference on Intelligent User Interfaces. New York, NY, pp. 33–39 (1997)Google Scholar
  32. 32.
    Sutcliffe, G.: The CADE-20 automated theorem proving competition. AI Commun. 19(2), 173–181 (2006)Google Scholar
  33. 33.
    Syme, D.: A new interface for HOL – ideas, issues and implementation. In: Proceedings of Higher-order Logic Theorem Proving and its Applications. 8th International Workshop, TPHOLs 1995. LNCS, vol. 971, pp. 324–339 (1995)Google Scholar
  34. 34.
    Takahashi, K., Hagiya, M.: Proving as editing HOL tactics. Form. Asp. Comput. 11(3), 343–357 (1999)CrossRefGoogle Scholar
  35. 35.
    Wenzel, M.: Type classes and overloading in higher-order logic.. In: TPHOLs, pp. 307–322 (1997)Google Scholar
  36. 36.
    Werner, B.: Une théorie des constructions inductives. PhD thesis, Université Paris VII (1994)Google Scholar
  37. 37.
    Zacchiroli, S.: User interaction widgets for interactive theorem proving. PhD thesis, University of Bologna (2007)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Andrea Asperti
    • 1
  • Claudio Sacerdoti Coen
    • 1
  • Enrico Tassi
    • 1
  • Stefano Zacchiroli
    • 1
  1. 1.Department of Computer ScienceUniversity of BolognaBolognaItaly

Personalised recommendations