Advertisement

Journal of Automated Reasoning

, Volume 38, Issue 1–3, pp 127–153 | Cite as

Superposition-based Equality Handling for Analytic Tableaux

  • Martin Giese
Article

Abstract

We present a variant of the basic ordered superposition rules to handle equality in an analytic free-variable tableau calculus. We prove completeness of this calculus by an adaptation of the model generation technique commonly used for completeness proofs of superposition in the context of resolution calculi. The calculi and the completeness proof are compared to earlier results of Degtyarev and Voronkov. Some variations and refinements are discussed.

Key words

superposition rules equality handling analytic tableaux 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bachmair, L., Dershowitz, N., Plaisted, D.A.: Completion without failure. In: Aït-Kaci, H., Nivat, M. (eds.) Resolution of Equations in Algebraic Structures, vol 2, pp. 1–30. Rewriting Techniques. New York: Academic (1989)Google Scholar
  2. 2.
    Bachmair, L., Ganzinger, H.: On restrictions of ordered paramodulation with simplication. In: Stickel, M.E. (ed.) Proceedings of CADE-10, Kaiserslautern, Germany, vol. 449 of LNCS, pp. 427–441. Springer, Berlin Heidelberg New York (1990)Google Scholar
  3. 3.
    Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplificat ion. J. Log. Comput. 4(3), 217–247 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bachmair, L., Ganzinger, H.: Resolution theorem proving. In (Robinson and Voronkov, 2001), Chap 2, pp. 19–99, Amsterdam, The Netherlands (2001)Google Scholar
  5. 5.
    Bachmair, L., Ganzinger, H., Lynch, C., Snyder, W.: Basic paramodulation. Inf. Comput. 121(2), 172–192 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bachmair, L., Ganzinger, H., Voronkov, A.: Elimination of equality via transformation with ordering constraints. Research Report MPI-I-97-2-012, Max-Planck-Institut für Informatik, Im Stadtwald, D-66123 Saarbrücken, Germany (1997)Google Scholar
  7. 7.
    Baumgartner, P.: Hyper tableaux – the next generation. In: de Swart, H. (ed.) Proc International Conference on Automated Reasoning with Analytic Tableaux and Related Methods, Oosterwijk, The Netherlands, pp. 60–76. Springer, Berlin Heidelberg New York (1998)Google Scholar
  8. 8.
    Baumgartner, P., Tinelli, C.: The model evolution calculus with equality. In: Nieuwenhuis, R. (ed.) Proc., 20th International Conference on Automated Deduction, CADE vol. 3632, pp. 392–408, LNCS. Springer, Berlin Heidelberg New York (2005)Google Scholar
  9. 9.
    Beckert, B.: Ein vervollständigungsbasiertes Verfahren zur Behandlung von Gleichheit im Tableaukalkül mit freien Variablen. Diplomarbeit, Fakultät für Informatik, Universität Karlsruhe (1993)Google Scholar
  10. 10.
    Beckert, B.: Adding equality to semantic tableaux. In: Broda, K., D’Agostino, M., Goré, R., Johnson, R., Reeves, S. (eds.) Proceedings, 3rd Workshop on Theorem Proving with Analytic Tableaux and Related Methods, Abingdon. Imperial College, London, TR-94/5, pp. 29–41 (1994a)Google Scholar
  11. 11.
    Beckert, B.: A completion-based method for mixed universal and rigid E-unification. In: Bundy, A. (ed.) Proc 12th Conference on Automated Deduction CADE, Nancy/France, pp. 678–692. Springer, Berlin Heidelberg New York (1994b)Google Scholar
  12. 12.
    Billon, J.-P.: The disconnection method: a confluent integration of unification in the analytic framework. In: Miglioli, P., Moscato, U., Mundici, D., Hi, M.O. (eds.) Theorem Proving with Tableaux and Related Methods, 5th International Workshop, TABLEAUX’96, Terrasini, Palermo, Italy, vol. 1071 of LNCS, pp. 110–126. Springer, Berlin Heidelberg New York (1996)Google Scholar
  13. 13.
    Brand, D.: Proving theorems with the modification method. SIAM J. Comput. 4(4), 412–430 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Degtyarev, A., Voronkov, A.: Equality Elimination for Semantic Tableaux. Technical Report 90, Comp. Science Dept., Uppsala University, Sweden (1994)Google Scholar
  15. 15.
    Degtyarev, A., Voronkov, A.: The undecidability of simultaneous rigid E-unification. Theor. Comput. Sci. 166(1–2), 291–300 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Degtyarev, A., Voronkov, A.: What you always wanted to know about rigid E-unification. Technical Report 143, Comp. Science Dept., Uppsala University, Sweden (1997)Google Scholar
  17. 17.
    Degtyarev, A., Voronkov, A.: What you always wanted to know about rigid E-unification. J. Autom. Reason. 20(1), 47–80 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Degtyarev, A., Voronkov, A.: Equality reasoning in sequent-based calculi. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, chap. 10, pp. 611–706. Elsevier, Amsterdam, The Netherlands (2001)Google Scholar
  19. 19.
    Fitting, M.C.: First-order Logic and Automated Theorem Proving, 2nd edn. Springer, Berlin Heidelberg New York (1996)zbMATHGoogle Scholar
  20. 20.
    Gallier, J., Raatz, S., Snyder, W.: Theorem proving using rigid E-unification: equational matings. In: Proc. IEEE Symp. on Logic in Computer Science, pp. 338–346. IEEE Computer Society Press, Los Alamitos, CA (1987)Google Scholar
  21. 21.
    Gallier, J.H., Snyder, W.: Complete sets of transformations for general E-unification. Theor. Comput. Sci. 67, 203–260 (1989)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Giese, M.: Incremental closure of free variable tableaux. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) Proc. Intl. Joint Conf. on Automated Reasoning, Siena, Italy. Springer, Berlin Heidelberg New York (2001a)Google Scholar
  23. 23.
    Giese, M.: Model generation style completeness proofs for constraint tableaux with superposition. Technical Report 2001-20, Universität Karlsruhe TH, Germany (2001b)Google Scholar
  24. 24.
    Giese, M.: A model generation style completeness proof for constraint tableaux with superposition. In: Egly, U., Fermller, C.G. (eds.) Proc. Intl. Conf. on Automated Reasoning with Analytic Tableaux and Related Methods, Copenhagen, Denmark, vol. 2381 of LNCS, pp. 130–144. Springer, Berlin Heidelberg New York (2002a)Google Scholar
  25. 25.
    Giese, M.: Proof search without backtracking for free variable tableaux. Ph.D. thesis, Fakultät für Informatik, Universität Karlsruhe, Germany (2002b)Google Scholar
  26. 26.
    Giese, M.: Saturation up to redundancy for tableau and sequent calculi. In: Hermann, M., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence, and Reasoning, 13th Intl. Conf., LPAR 2006, Phnom Penh, Cambodia. (2006) (to appear)Google Scholar
  27. 27.
    Giese, M., Hähnle, R.: Tableaux + constraints. Also as Tech. Report RT-DIA-80-2003, Dipt. di Informatica e Automazione, Università degli Studi di Roma Tre, Italy (2003)Google Scholar
  28. 28.
    Hähnle, R.: Tableaux and related methods. In (Robinson and Voronkov), Chap. 3, pp. 100–178. Elsevier, Amsterdam, The Netherlands (2001)Google Scholar
  29. 29.
    Kamin, S., Lévy, J.-J.: Attempts for generalizing the recursive path orderings. Dept. of Computer Science, University of Illinois, Urbana, Illinois (1980) (available online at http://perso.ens-lyon.fr/pierre.lescanne/not_accessible.html)
  30. 30.
    Kanger, S.: A simplified proof method for elementary logic. Computer Programming and Formal Systems, pp. 87–94. (1963) (Reprinted as Kanger, 1983)Google Scholar
  31. 31.
    Kanger, S.: A simplified proof method for elementary logic. In: Siekmann, J.H., Wrightson, G. (eds.): Automation of Reasoning 1: Classical Papers on Computational Logic 1957–1966, pp. 364–371. Springer, Berlin Heidelberg New York (1983)Google Scholar
  32. 32.
    Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra. Pergamon, Oxford, pp. 263–297 (1970) (Reprinted as Knuth and Bendix, 1983)Google Scholar
  33. 33.
    Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Siekmann, J.H., Wrightson, G. (eds.) Automation of Reasoning 2: Classical Papers on Computational Logic 1967–1970, pp. 1967–1970. Springer, Berlin Heidelberg New York (1983)Google Scholar
  34. 34.
    Korovin, K., Voronkov, A.: Knuth–Bendix constraint solving is NP-complete. In: Proc. Intl. Conf. on Automata, Languages and Programming (ICALP), vol. 2076 of LNCS, pp. 979–992 (2001)Google Scholar
  35. 35.
    Letz, R., Stenz, G.: Integration of equality reasoning into the disconnection calculus. In: Egly, U., Fermüller, C.G. (eds.) Proc. Intl. Conf. on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX-2002), Copenhagen, Denmark. Springer, Berlin Heidelberg New York (2002)Google Scholar
  36. 36.
    McCune, W.: Solution of the Robbins problem. J. Autom. Reason. 19(3), 263–276 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Moser, M., Steinbach, J.: STE-modification revisited. AR-Report AR-97-03, Institut für Informatik, München, Germany (1997)Google Scholar
  38. 38.
    Nieuwenhuis, R., Rivero, J.M.: Solved forms for path ordering constraints. In: Narendran, P., Rusinowitch, M. (eds.) Proc. 10th International Conference on Rewriting Techniques and Applications (RTA), Trento, Italy, vol. 1631 of LNCS, pp. 1–15. Springer, Berlin Heidelberg New York (1999)Google Scholar
  39. 39.
    Nieuwenhuis, R., Rubio, A.: Theorem proving with ordering and equality constrained clauses. J. Symb. Comput. 19(4), 321–351 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Nieuwenhuis, R., Rubio, A.: Paramodulation with built-in AC-theories and symbolic constraints. J. Symb. Comput. 23(1), 1–21 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In (Robinson and Voronkov, 2001), Chap. 7, pp. 371–443. Elsevier, Amsterdam (2001)Google Scholar
  42. 42.
    Petermann, U.: A complete connection calculus with rigid E-unification. In: MacNish, C., Pearce, D., Pereira, L.M. (eds.) Logics in Artificial Intelligence (JELIA), pp. 152–166. Springer, Berlin Heidelberg New York (1994)CrossRefGoogle Scholar
  43. 43.
    Riazanov, A., Voronkov, A.: Vampire 1.1 (System description). In: Goré, R., Leitsch, A., Nipkow, T. (eds.) Proc. Intl. Joint Conf. on Automated Reasoning, Siena, Italy, vol. 2083 of LNCS, pp. 376–380. Springer, Berlin Heidelberg New York (2001)Google Scholar
  44. 44.
    Robinson, A., Voronkov, A. (eds.): Handbook of Automated Reasoning. Elsevier, Amsterdam, The Netherlands (2001)zbMATHGoogle Scholar
  45. 45.
    Robinson, G.A., Wos, L.: Paramodulation and theorem-proving in first-order theories with equality. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 4, pp. 135–150. Edinburgh University Press, Edinburgh, Scotland (1969)Google Scholar
  46. 46.
    Rubio, A.: Automated deduction with ordering and equality constrained clauses. Ph.D. thesis, Technical University of Catalonia, Barcelona, Spain (1994)Google Scholar
  47. 47.
    Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol, II, Chap. 27, pp. 1965–2013. Elsevier, Amsterdam, The Netherlands (2001)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Johann Radon Institute for Computational and Applied MathematicsAustrian Academy of SciencesLinzAustria

Personalised recommendations