Advertisement

Journal of Automated Reasoning

, Volume 36, Issue 3, pp 177–212 | Cite as

Predicting and Detecting Symmetries in FOL Finite Model Search

  • Gilles Audemard
  • Belaïd Benhamou
  • Laurent Henocque
Article

Abstract

Symmetries abound in logically formulated problems where many axioms are universally quantified, as this is the case in equational theories. Two complementary approaches have been used so far to dynamically tackle those symmetries: prediction and detection. The best-known predictive symmetry elimination method is the least number heuristic (lnh). A more recent predictive method, the extended least number heuristic (xlnh), focuses first on the enumeration of a bijection in the problem and easily exploits in the sequel the remaining isomorphisms. On the other hand, dynamic symmetry detection is costly in the general case (the problem is Graph Iso complete) but allows one to exploit more symmetries, and efficient (polytime) yet incomplete detection algorithms can be used on each node. This paper presents a generalization of xlnh that focuses on the enumeration of a unary function that does not require the function to be bijective, a general notion of symmetry for finite-model search in first-order logic together with an efficient symmetry detection algorithm, and a function-ordering heuristic that exploits the inherent structure of first-order logic theories to improve the search when using function-centric methods. A comprehensive study of the compared efficiency of all methods, in isolation and in combination, demonstrates the acceleration that can be expected in all cases. These ideas are implemented by using the known system SEM as an experimentation framework, to allow for accurate comparisons.

Key words

finite models symmetry constraint programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Solving difficult instances of boolean satisfiability in the presence of symmetry. IEEE Trans. Comput.-Aided Des. Integr. Circ. and Systems 22(9):1117–1137 (2003)CrossRefGoogle Scholar
  2. 2.
    Andrews, G.: The Theory of Partitions. Cambridge Mathematical Library, Cambridge University Press (1998)Google Scholar
  3. 3.
    Audemard, G., Benhamou, B.: Reasoning by symmetry and function ordering in finite model generation. In: Voronkov, A. (ed.), Proceedings of the 18th International Conference on Automated Deduction (CADE-18), Vol. 2392 of LNCS, pp. 226–240. Springer, Berlin Heidelberg New York (2002)Google Scholar
  4. 4.
    Audemard, G., Henocque, L.: The extended least number heuristic. In: Goré, T.N.R., Leitsch, A. (eds.), Proceedings of the First International Join Conference in Automated Reasoning (IJCAR), Vol. 2083 of LNCS, pp. 427–442. Springer, Berlin Heidelberg New York (2001)Google Scholar
  5. 5.
    Benhamou, B.: Study of symmetry in constraint satisfaction problems. In: Proceedings of PPCP (1994)Google Scholar
  6. 6.
    Benhamou, B., Henocque, L.: A hybrid method for finite model search in equational theories. Fundam. Inform. 39(1-2), 21–38 (1999)MathSciNetGoogle Scholar
  7. 7.
    Benhamou, B., Sais, L.: Theoretical study of symmetry in propositionnal calculus and applications. In: Proceedings of the 11th International Conference on Automated Deduction, CADE-11, pp. 281–294. Springer, Berlin Heidelberg New York (1992)Google Scholar
  8. 8.
    Benhamou, B., Sais, L.: Tractability through symmetries in propositional calculus. J. Autom. Reasoning 12(1), 89–102 (1994)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Boy dela Tour, T.: Up-to-isomorphism enumeration of finite models – the monadic case. In: Bonacina, M.P., Furbach, U. (eds.), FTP97 International Workshop First-Order Theorem Proving. Schloss Hagenberg by Linz (Austria), pp. 29–33. RISC-Linz Report Series No. 97-50 (1997)Google Scholar
  10. 10.
    Boy dela Tour, T.: Some techniques of isomorph-free search. In: Revised Papers from the International Conference on Artificial Intelligence and Symbolic Computation, pp. 240–252. Springer, Berlin Heidelberg New York (2001)Google Scholar
  11. 11.
    Comtet, L.: Analyse combinatoire, Vol. 1, Chapt. 2. Presses Universitaires de France (1970)Google Scholar
  12. 12.
    Crawford, J.: A theoretical analysis of reasoning by symmetry in first order logic. In: Proceedings of Workshop on Tractable Reasonning, AAI92, pp. 17–22 (1992)Google Scholar
  13. 13.
    Crawford, J., Ginsberg, M.L., Luck, E., Roy, A.: Symmetry-breaking predicates for search problems. In: KR’96: Principles of Knowledge Representation and Reasoning, pp. 148–159. Morgan Kaufmann, San Francisco, California (1996)Google Scholar
  14. 14.
    Dubois, O., Dequen, G., The non-existence of (3,1,2)-conjugate orthogonal idempotent latin square of order 10. In: 7th International Conference on Principles and Practice of Constraint Programming, Vol. 2239 of LNCS, pp. 108–121. Springer, Berlin Heidelberg New York (2001)Google Scholar
  15. 15.
    Fahle, T., Schamberger, S., Sellmann, M.: Symmetry breaking. In: International Conference on Constraint Programming, Vol. 2239 of LNCS, pp. 93–108. Springer, Berlin Heidelberg New York (2001)Google Scholar
  16. 16.
    Fermüller, C.G., Leitsch, A.: Decision procedures and model building in equational clause logic. Logic J. IGPL 6(1), 17–41 (1998)CrossRefGoogle Scholar
  17. 17.
    Focacci, F., Milano, M.: Global cut framework for removing symmetries. In: International Conference on Constraint Programming, Vol. 2239 of LNCS, pp. 77–82. Springer, Berlin Heidelberg New York (2001)Google Scholar
  18. 18.
    Fujita, M., Slaney, J., Bennett, F.: Automatic generation of some results in finite algebra. In: Proceedings of the International Join Conference on Artificial Intelligence, pp. 52–57. Morgan Kaufmann (1993)Google Scholar
  19. 19.
    Gent, I., Harvey, W., Kelsey, T.: Groups and constraints: Symmetry breaking during search. In: International Conference on Constraint Programming, Vol. 2470 of LNCS, pp. 415–430. Springer, Berlin Heidelberg New York (2002)Google Scholar
  20. 20.
    McCune, W.: A Davis-Putnam Program and Its Application to Finite First-Order Model Search: Quasigroup Existence Problems. Technical Memorandum ANL/MCS-TM-194, Argonne National Laboratory, Argonne, Illinois (1994)Google Scholar
  21. 21.
    McKay, B.D.: Nauty User’s Guide (version 1.5). Technical Report TR-CS90 -02, Computer Science Department, Australian National University (1990)Google Scholar
  22. 22.
    Meseguer, P., Torras, C.: Solving strategies for highly symmetric CSPs. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI-99), pp. 400–405. Morgan Kaufmann (1999)Google Scholar
  23. 23.
    Montanari, U.: Networks of constraints: Fundamental properties and applications to picture processing. Inform. Sci. 7, 95–132 (1974)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Peltier, N.: A new method for automated finite model building exploiting failures and symmetries. J. Logic Comput. 8(4), 511–543 (1998)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Puget, J.: Symmetry breaking revisited. In: International Conference on Constraint Programming, Vol. 2470 of LNCS, pp. 446–461. Springer, Berlin Heidelberg New York (2001)Google Scholar
  26. 26.
    Puget, J.-F.: Automatic detection of variable and value symmetries. In: Proceedings of CP 2005, pp. 475–489 (2005)Google Scholar
  27. 27.
    Slanley, J.: FINDER: Finite Domain Enumerator. Version 3 Notes and Guides. Technical Report, Austrian National University (1993)Google Scholar
  28. 28.
    Suttner, C.B., Sutcliffe, G.: The TPTP Problem Library - v2.1.0. Technical Report JCU-CS-97/8, Department of Computer Science, James Cook University (1997)Google Scholar
  29. 29.
    Tammet, T.: Resolution Methods for Decision Problems and Finite-Model Building. Ph.D. thesis, Göteborg University (1992)Google Scholar
  30. 30.
    Zhang, J.: Problems on the generation of finite models. In: Bundy, A. (ed.), 12th International Conference on Automated Deduction, Nancy, France, pp. 753–757. Springer, Berlin Heidelberg New York (1994)Google Scholar
  31. 31.
    Zhang, J.: Constructing finite algebras with FALCON. J. Autom. Reasoning 17(1), 1–22 (1996)CrossRefGoogle Scholar
  32. 32.
    Zhang, J.: Test problem and perl script for finite model searching. Association of Automated Reasoning, Newsletter 47 (2000)Google Scholar
  33. 33.
    Zhang, J., Zhang, H.: SEM: A system for enumerating models. In: Mellish, C.S. (ed.), Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, pp. 298–303 (1995)Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  • Gilles Audemard
    • 1
  • Belaïd Benhamou
    • 2
  • Laurent Henocque
    • 3
  1. 1.CRILUniversité d’ArtoisLens cedexFrance
  2. 2.Université de Provence, LSIS - UMR CNRS 6168Marseille cedex 13France
  3. 3.Laboratoire des Sciences de l’Information et des Systèmes, LSIS - UMR CNRS 6168Domaine Universitaire de Saint-JérômeMarseille cedex 20France

Personalised recommendations