Journal of Archaeological Method and Theory

, Volume 26, Issue 4, pp 1513–1555 | Cite as

Mapping the Adena-Hopewell Landscape in the Middle Ohio Valley, USA: Multi-Scalar Approaches to LiDAR-Derived Imagery from Central Kentucky

  • Edward R. HenryEmail author
  • Carl R. Shields
  • Tristram R. Kidder


Archaeologists around the world have shown that LiDAR has the potential to map a wide range of architectural features built by humans. The ability to map archaeological sites at a landscape scale provides researchers the possibility to reconstruct and assess the ways humans organized, constructed, and interacted with their surroundings. However, LiDAR can be impacted by a variety of modern development and land use practices. In this article, we confront these issues by presenting the first examination of high-resolution LiDAR-derived imagery from Central Kentucky, part of the larger heartland for late-Early and Middle Woodland-era (ca. 300 bcad 500) Adena-Hopewell societies. Our investigations demonstrate that multiple issues can arise when analyzing LiDAR imagery for monumental earthen architecture in this region. We outline an integrated strategy to rediscover and confirm the presence of earthen architecture made by Adena-Hopewell societies that incorporates aerial photographs, multi-instrument geophysical surveys, and geoarchaeological methods into the examination of LiDAR imagery. This methodology will be applicable in other global contexts where archaeologists are seeking to rediscover ancient forms of earthen architecture within heavily disturbed or developed landscapes.


LiDAR Geophysics Geoarchaeology Earthen monuments Adena-Hopewell Eastern North America 



We would like to thank staff at the National Resources Conservation Service (NRCS) in Lexington, KY, in particular William (Bill) Sharp, Scott Aldridge, Karen Woodrich, and state soil scientist Steve Blanford. Several professors and staff administrators at the Kentucky Archaeological Survey, the Program for Archaeological Research, and the Webb Museum of Anthropology at the University of Kentucky helped by lending equipment, time, and thoughts on the project. We thank them for their support. Finally, we would like to thank the present landowners of the sites we worked on across Central Kentucky for providing access to their land and for taking the time to talk with us about local histories.

Funding information

This work was conducted with funding from a Waitt Foundation grant provided by the National Geographic Society (grant no. 3261-4), the National Science Foundation (grant no. 1545577), and the American Philosophical Society’s Lewis and Clark Fund for Exploration and Field Research, in addition to funding from the Graduate School of Arts & Sciences at Washington University in St. Louis.


  1. Abrams, E. M., & Freter, A. C. (Eds.). (2005). The emergence of the Moundbuilders: The archaeology of tribal societies in southeastern Ohio. Athens: Ohio University Press.Google Scholar
  2. Alizadeh, K., & Ur, J. A. (2007). Formation and destruction of pastoral and irrigation landscapes on the Mughan steppe, North-Western Iran. Antiquity, 81(311), 148–160. Scholar
  3. Anderson, D. G., & Mainfort, R. C. (2002). An introduction to woodland archaeology in the southeast. In D. G. Anderson & R. C. Mainfort (Eds.), The woodland southeast (pp. 1–19). Tuscaloosa: University of Alabama Press.Google Scholar
  4. Applegate, D. (2013). The early–middle woodland domestic landscape in Kentucky. In A. P. Wright & E. R. Henry (Eds.), Early and middle woodland landscapes of the southeast (pp. 19–44). Gainesville: University Press of Florida.Google Scholar
  5. Aspinall, A., Gaffney, C. F., & Schmidt, A. (2009). Magnetometry for archaeologists. Lanham: AltaMira Press.Google Scholar
  6. Baires, S. E. (2014). Cahokia’s rattlesnake causeway. Midcontinental Journal of Archaeology, 39(1), 1–18.Google Scholar
  7. Barnes, I. (2003). Aerial remote-sensing techniques used in the Management of Archaeological Monuments on the British Army’s Salisbury plain training area, Wiltshire, UK. Archaeological Prospection, 10(2), 83–90. Scholar
  8. Barrier, C. R., & Horsley, T. J. (2014). Shifting communities: Demographic profiles of early village population growth and decline in the central American bottom. American Antiquity, 79(2), 295–313.Google Scholar
  9. Beck, R. A., Jr., & Brown, J. A. (2011). Political economy and the routinization of religious movements: A view from the eastern woodlands. Archeological Papers of the American Anthropological Association, 21(1), 72–88. Scholar
  10. Bennett, R., Welham, K., Hill, R. A., & Ford, A. (2011). Making the Most of airborne remote sensing techniques for archaeological survey and interpretation. In D. C. Cowley (Ed.), Remote sensing for archaeological heritage management (pp. 99–107). Hungary: Archaeolingua Scholar
  11. Bewley, R. H., Crutchley, S. P., & Shell, C. A. (2005). New light on an ancient landscape: LiDAR survey in the Stonehenge world heritage site. Antiquity, 79(305), 636–647.Google Scholar
  12. Bowen, J. R., Bertossi, C., Duyvendak, J. W., & Krook, M. L. (Eds.). (2013). European states and their Muslim citizens. Cambridge: Cambridge University Press.Google Scholar
  13. Brose, D. S., & Greber, N.’o. (Eds.). (1979). Hopewell archaeology: The Chillicothe conference (MCJA special paper, no) (Vol. 3). Kent, Ohio: Kent State University Press.Google Scholar
  14. Brown, J. A. (1997). The archaeology of ancient religion in the eastern woodlands. Annual Review of Anthropology, 26(1), 465–485.Google Scholar
  15. Brown, J. A. (2005). Reflections on taxonomic practice. In D. Applegate & R. C. Mainfort (Eds.), Woodland period systematics in the middle Oiho Valley (pp. 111–119). Tuscaloosa: University of Alabama Press.Google Scholar
  16. Brown, J. A. (2006). The shamanic element in Hopewell period ritual. In D. K. Charles & J. E. Buikstra (Eds.), Recreating Hopewell (pp. 475–488). Gainesville: University Press of Florida.Google Scholar
  17. Burks, J. (2013a). Large Area Magnetic Gradient Survey at the High Bank Works Unit, Hopewell Culture National Historical Park, Ross County, Ohio. Contract Report 2012–52–2. OVAI Contract Report. Columbus, OH: Ohio Valley Archaeology, Inc..Google Scholar
  18. Burks, J. (2013b). Large Area Magnetic Gradient Survey at the Hopewell Mound Group Unit, Hopewell Culture National Historical Park, Ross County, Ohio. Contract Report 2012–52–1. OVAI Contract Report. Columbus, OH: Ohio Valley Archaeology, Inc..Google Scholar
  19. Burks, J. (2014). Geophysical survey at Ohio earthworks: Updating nineteenth century maps and filling the ‘empty’ spaces: Geophysical survey at Ohio earthworks. Archaeological Prospection, 21(1), 5–13. Scholar
  20. Burks, Jarrod. 2015. The Jones Group Earhtworks (33PI1347): A newly discovered earthwork complex in Pickaway County, Ohio. Current Research in Ohio Archaeology.
  21. Burks, J., & Cook, R. A. (2011). Beyond Squier and Davis: Rediscovering Ohio’s earthworks using geophysical remote sensing. American Antiquity, 76(4), 667–689.Google Scholar
  22. Byers, A. M. (2004). The Ohio Hopewell episode: Paradigm lost and paradigm gained. Akron, Ohio: The University of Akron Press.Google Scholar
  23. Byers, A. M. (2011). Sacred games, death, and renewal in the ancient eastern woodlands: The Ohio Hopewell System of Cult Sodality Heterarchies. Lanham, MD: AltaMira Press.Google Scholar
  24. Caldwell, J. R. (1964). Interaction Spheres in Prehistory. In J. R. Caldwell & R. L. Hall (Eds.), Hopewellian Studies (Vol. 12, pp. 133–143. Scientific Papers 2.). Springfield: Illinois State Museum.Google Scholar
  25. Campana, S., & Piro, S. (2008). Seeing the unseen. Geophysics and landscape archaeology. Boca Raton, FL: CRC Press.Google Scholar
  26. Canuto, M. A., Estrada-Belli, F., Garrison, T. G., Houston, S. D., Acuña, M. J., Kováč, M., Marken, D., et al. (2018). Ancient Lowland Maya Complexity as Revealed by Airborne Laser Scanning of Northern Guatemala. Science, 361(6409), eaau0137. Scholar
  27. Carr, C. (2008). Social and ritual organization. In D. Troy Case & C. Carr (Eds.), The Scioto Hopewell and their neighbors: Bioarchaeological documentation and cultural understanding (pp. 151–288). New York, N.Y: Springer.Google Scholar
  28. Carr, C., & Case, D. T. (Eds.). (2005). Gathering Hopewell: Society, ritual, and interaction. New York: Kluwer Academic/Plenum Publishers.Google Scholar
  29. Carr, C., & McCord, R. (2013). Ohio Hopewell depictions of composite creatures: Part I—Biological identification and Ethnohistorical insights. Midcontinental Journal of Archaeology, 38(1), 5–81.Google Scholar
  30. Carr, C., & McCord, R. (2015). Ohio Hopewell depictions of composite creatures: Part II–archaeological context and a journey to an afterlife. Midcontinental Journal of Archaeology, 40(1), 18–47. Scholar
  31. Case, D. T., & Carr, C. (2008). The Scioto Hopewell and Their Neighbors: Bioarchaeological Documentation and Cultural Understanding. Berlin: Springer Scholar
  32. Challis, K., Forlin, P., & Kincey, M. (2011). A generic toolkit for the visualization of archaeological features on airborne LiDAR elevation data: Visualizing archaeological features in airborne LiDAR. Archaeological Prospection, 18(4), 279–289. Scholar
  33. Charles, D. K. (2012). Colorful Practices in Hopewellian Earthwork Construction. RES: Anthropology and Aesthetics, 61/62, 343–352.Google Scholar
  34. Charles, D. K., & Buikstra, J. E. (2002). Siting, sighting, and citing the dead. Archeological Papers of the American Anthropological Association, 11(1), 13–25. Scholar
  35. Charles, D. K., & Buikstra, J. E. (Eds.). (2006). Recreating Hopewell. Gainesville: University Press of Florida.Google Scholar
  36. Charles, D. K., Van Nest, J., & Buikstra, J. E. (2004). From the earth: Minerals and meaning in the Hopewellian world. In N. Boivin & M. A. Owoc (Eds.), Soils, stones, and symbols: Cultural perceptions of the mineral world (pp. 43–70). London: UCL Press.Google Scholar
  37. Chase, A. F., Chase, D. Z., Weishampel, J. F., Drake, J. B., Shrestha, R. L., Clint Slatton, K., Awe, J. J., & Carter, W. E. (2011). Airborne LiDAR, archaeology, and the ancient Maya landscape at Caracol, Belize. Journal of Archaeological Science, 38(2), 387–398. Scholar
  38. Chase, A. F., Chase, D. Z., Fisher, C. T., Leisz, S. J., & Weishampel, J. F. (2012). Geospatial revolution and remote sensing LiDAR in Mesoamerican archaeology. Proceedings of the National Academy of Sciences, 109(32), 12916–12921. Scholar
  39. Chase, A. F., Reese-Taylor, K., Fernandez-Diaz, J. C., & Chase, D. Z. (2016). Progression and issues in the Mesoamerican geospatial revolution. Advances in Archaeological Practice, 4(03), 219–231. Scholar
  40. Clay, R. B. (1983). Pottery and graveside ritual in Kentucky Adena. Midcontinental Journal of Archaeology, 8(1), 109–126.Google Scholar
  41. Clay, R. B. (1985). Peter Village 164 years later: 1983 excavations. In D. Pollack, T. Saunders, & C. D. Hockensmith (Eds.), Woodland period research in Kentucky (pp. 1–42). Frankfort, KY: Kentucky Heritage Council.Google Scholar
  42. Clay, R. B. (1998). The essential features of Adena ritual and their implications. Southeastern Archaeology, 17(1), 1–21.Google Scholar
  43. Clay, R. B. (2001). Complementary geophysical survey techniques: Why two ways are always better than one. Southeastern Archaeology, 31–43.Google Scholar
  44. Clay, R. B. (2006). Conductivity survey. In J. K. Johnson (Ed.), Remote sensing in archaeology: An explicitly north American perspective (pp. 79–107). Tuscaloosa: University Alabama Press.Google Scholar
  45. Conyers, L. B. (2004). Ground-penetrating radar for archaeology. Walnut Creek, CA: AltaMira Press.Google Scholar
  46. Crutchley, S., & Crow, P. (2009). The light fantastic: Using airborne laser scanning in archeological survey. Swindon: Historic England.Google Scholar
  47. Dancey, W. S., & Pacheco, P. J. (Eds.). (1997). Ohio Hopewell community organization. Kent, Ohio: Kent State University Press.Google Scholar
  48. Davis, D. S., Sanger, M. C., & Lipo, C. P. (2019). Automated mound detection using LiDAR and object-based image analysis in Beaufort County, South Carolina. Southeastern Archaeology, 38(1), 23–37. Scholar
  49. De Smedt, P., Van Meirvenne, M., Saey, T., Baldwin, E., Gaffney, C., & Gaffney, V. (2014). Unveiling the prehistoric landscape at Stonehenge through multi-receiver EMI. Journal of Archaeological Science, 50, 16–23. Scholar
  50. Devereux, B. J., Amable, G. S., & Crow, P. (2008). Visualisation of LiDAR terrain models for archaeological feature detection. Antiquity, 82(316), 470–479. Scholar
  51. Evans, D. (2016). Airborne laser scanning as a method for exploring long-term socio-ecological dynamics in Cambodia. Journal of Archaeological Science, 74, 164–175. Scholar
  52. Evans, D., & Fletcher, R. (2015). The landscape of Angkor wat redefined. Antiquity, 89(348), 1402–1419. Scholar
  53. Evans, D. H., Fletcher, R. J., Pottier, C., Chevance, J.-B., Soutif, D., Tan, B. S., Im, S., Ea, D., Tin, T., Kim, S., Cromarty, C., de Greef, S., Hanus, K., Baty, P., Kuszinger, R., Shimoda, I., & Boornazian, G. (2013). Uncovering archaeological landscapes at Angkor using LiDAR. Proceedings of the National Academy of Sciences, 110(31), 12595–12600. Scholar
  54. Farnsworth, K. B., & Emerson, T. E. (Eds.). (1986). Early woodland archeology (Kampsville seminars in archeology, v) (Vol. 2). Kampsville, Ill: Center for American Archeology Press.Google Scholar
  55. Fernández-Lozano, J., Gutiérrez-Alonso, G., & Fernández-Morán, M. Á. (2015). Using airborne LiDAR sensing technology and aerial Orthoimages to unravel Roman water supply systems and gold works in Nw Spain (Eria Valley, León). Journal of Archaeological Science, 53, 356–373. Scholar
  56. Field, D., Linford, N., Barber, M., Anderson-Whymark, H., Bowden, M., Topping, P., & Linford, P. (2014). Analytical surveys of Stonehenge and its immediate environs, 2009–2013: Part 1 – The landscape and earthworks. Proceedings of the Prehistoric Society, 80(December), 1–32. Scholar
  57. Fisher, C. T., Fernández-Diaz, J. C., Cohen, A. S., Cruz, O. N., Gonzáles, A. M., Leisz, S. J., Pezzutti, F., Shrestha, R., & Carter, W. (2016). Identifying Ancient Settlement Patterns through LiDAR in the Mosquitia Region of Honduras. Edited by Michael D. Petraglia. PLoS One, 11(8), e0159890. Scholar
  58. Frachetti, M. D. (2012). Multiregional emergence of Mobile pastoralism and nonuniform institutional complexity across Eurasia. Current Anthropology, 53(1), 2–38. Scholar
  59. Freeland, T., Heung, B., Burley, D. V., Clark, G., & Knudby, A. (2016). Automated feature extraction for prospection and analysis of monumental earthworks from aerial LiDAR in the Kingdom of Tonga. Journal of Archaeological Science, 69, 64–74. Scholar
  60. Gaffney, C. F., & Gater, J. (2003). Revealing the buried past: Geophysics for archaeologists. Stroud: Tempus.Google Scholar
  61. Gaffney, C. F., Gater, J. A., Linford, P., Gaffney, V. L., & White, R. (2000). Large-scale systematic fluxgate Gradiometry at the Roman City of Wroxeter. Archaeological Prospection, 7(2), 81–99.<81::AID-ARP145>3.0.CO;2-6.CrossRefGoogle Scholar
  62. Gaffney, C., Gaffney, V., Neubauer, W., Baldwin, E., Chapman, H., Garwood, P., Moulden, H., Sparrow, T., Bates, R., Löcker, K., Hinterleitner, A., Trinks, I., Nau, E., Zitz, T., Floery, S., Verhoeven, G., & Doneus, M. (2012). The Stonehenge hidden landscapes project. Archaeological Prospection, 19(2), 147–155. Scholar
  63. Gaffney, V., Neubauer, W., Garwood, P., Gaffney, C., Löcker, K., Bates, R., De Smedt, P., et al. (2018). Durrington walls and the Stonehenge hidden landscape project 2010–2016. Archaeological Prospection, 25(3), 255–269. Scholar
  64. Gibson, A. (2018). Survey and excavation at the Henges of the Wharfe Valley, North Yorkshire, 2013–15. Archaeological Journal, 175(1), 1–54. Scholar
  65. Harmon, J. M., Leone, M. P., Prince, S. D., & Snyder, M. (2006). LiDAR for archaeological landscape analysis: A Case study of two eighteenth-century Maryland plantation sites. American Antiquity, 71(4), 649–670. Scholar
  66. Heidemann, H. K. (2018). LiDAR Base Specification. USGS Numbered Series 11-B4. Techniques and Methods. Reston, VA: U.S. Geological Survey Scholar
  67. Henry, E. R. (2011). A multistage geophysical approach to detecting and interpreting archaeological features at the LeBus circle, Bourbon County, Kentucky. Archaeological Prospection, 18(4), 231–244. Scholar
  68. Henry, E. R. (2013). Working out Adena political organization and variation from the ritual landscape in the Kentucky bluegrass. In A. P. Wright & E. R. Henry (Eds.), Early and middle woodland landscapes of the southeast (pp. 219–233). Gainesville: University Press of Florida.Google Scholar
  69. Henry, E. R. (2017). Building bundles, building memories: Processes of remembering in Adena-Hopewell societies of eastern North America. Journal of Archaeological Method and Theory, 24(1), 188–228. Scholar
  70. Henry, Edward R. 2018. Earthen monuments and social movements in eastern North America: Adena-Hopewell enclosures on Kentucky’s bluegrass landscape. Dissertation, St. Louis, MO: Washington University in St. Louis.Google Scholar
  71. Henry, E. R., & Barrier, C. R. (2016). The Organization of Dissonance in Adena-Hopewell societies of eastern North America. World Archaeology, 48(1), 87–109. Scholar
  72. Henry, E. R., Laracuente, N. R., Case, J. S., & Johnson, J. K. (2014). Incorporating multistaged geophysical data into regional-scale models: A Case study from an Adena burial mound in Central Kentucky. Archaeological Prospection, 21(1), 15–26. Scholar
  73. Hesse, R. (2010). LiDAR-derived local relief models – A new tool for archaeological prospection. Archaeological Prospection, 17(2), 67–72. Scholar
  74. Horsley, T., Wright, A., & Barrier, C. (2014). Prospecting for new questions: Integrating geophysics to define anthropological research objectives and inform excavation strategies at monumental sites. Archaeological Prospection, 21(1), 75–86. Scholar
  75. Howey, M. C. L. (2012). Mound builders and monument makers of the northern Great Lakes, 1200–1600. Norman: University of Oklahoma Press Scholar
  76. Howey, M. C. L., Sullivan, F. B., Tallant, J., Kopple, R. V., & Palace, M. W. (2016). Detecting Precontact anthropogenic microtopographic features in a forested landscape with LiDAR: A Case study from the upper Great Lakes region, AD 1000-1600. PLoS One, 11(9), e0162062. Scholar
  77. Hutson, S. R. (2015). Adapting LiDAR data for regional variation in the tropics: A Case study from the northern Maya lowlands. Journal of Archaeological Science: Reports, 4, 252–263. Scholar
  78. Hutson, S. R., Kidder, B., Lamb, C., Vallejo-Cáliz, D., & Welch, J. (2016). Small buildings and small budgets: Making Lidar work in northern Yucatan, Mexico. Advances in Archaeological Practice, 4(3), 268–283. Scholar
  79. Jefferies, R. W., Milner, G. R., & Henry, E. R. (2013). Winchester farm: A small Adena enclosure in Central Kentucky. In A. P. Wright & E. R. Henry (Eds.), Early and middle woodland landscapes of the southeast (pp. 91–107). Gainesville: University Press of Florida.Google Scholar
  80. Johnson, J. K. (Ed.). (2006). Remote sensing in archaeology: An explicitly north American perspective. Tuscaloosa: University of Alabama Press.Google Scholar
  81. Johnson, K. M., & Ouimet, W. B. (2014). Rediscovering the lost archaeological landscape of southern New England using airborne light detection and ranging (LiDAR). Journal of Archaeological Science, 43, 9–20. Scholar
  82. Johnson, K. M., & Ouimet, W. B. (2018). An observational and theoretical framework for interpreting the landscape palimpsest through airborne LiDAR. Applied Geography, 91, 32–44. Scholar
  83. Kassabaum, M. C., Cranford, D. J., & Nelson, E. S. (2011). Multiple modes of monumentality: Case studies from the American south. The SAA Archaeological Record, 11(4), 33–37.Google Scholar
  84. Kidder, T. R., & Sherwood, S. C. (2016). Look to the earth: The search for ritual in the context of mound construction. Archaeological and Anthropological Sciences, 9(6), 1077–1099. Scholar
  85. Klandermans, B., & van Stekelenburg, J. (2013). Social movements and the dynamics of collective action. In L. Huddy, D. O. Sears, & J. S. Levy (Eds.), The Oxford handbook of political psychology (Second ed., pp. 774–811). Oxford: Oxford University Press. Scholar
  86. Kokalj, Ž., & Hesse, R. (2017). Airborne laser scanning raster data visualization: A guide to good practice. Ljubljana: Založba ZRC Scholar
  87. Kokalj, Ž., Zakšek, K., & Oštir, K. (2011). Application of sky-view factor for the visualisation of historic landscape features in Lidar-derived relief models. Antiquity, 85(327), 263–273. Scholar
  88. Kvamme, K. L. (2003). Geophysical surveys as landscape archaeology. American Antiquity, 68(3), 435–457. Scholar
  89. Kvamme, K. L. (2006). Magnetometry: Nature’s gift to archaeology. In J. K. Johnson (Ed.), Remote sensing in archaeology: An explicitly north American perspective (pp. 205–234). Tuscaloosa: University of Alabama Press.Google Scholar
  90. KYAPED, Kentucky’s Elevation Data & Aerial Photography Program. (2016). 3DEP quality level assessment. Frankfort, KY: Commonwealth of Kentucky Scholar
  91. KYAPED, Kentucky’s Elevation Data & Aerial Photography Program. (2017). State of Kentucky LiDAR production technical specifications. Frankfort, KY: Commonwealth of Kentucky Scholar
  92. Larkin, B. (2013). The politics and poetics of infrastructure. Annual Review of Anthropology, 42(1), 327–343. Scholar
  93. Loughlin, M. L., Pool, C. A., Fernandez-Diaz, J. C., & Shrestha, R. L. (2016). Mapping the Tres Zapotes polity. Advances in Archaeological Practice, 4(03), 301–313. Scholar
  94. Lynott, M. (2015). Hopewell ceremonial landscapes of Ohio: More than mounds and geometric earthworks (Vol. American Landscapes. 1 vols). Oxford, U.K.: Oxbow Books.Google Scholar
  95. Maeckelbergh, M. (2016). Social movements as process. In S. Coleman, S. B. Hyatt, & A. Kingsolver (Eds.), The Routledge companion to contemporary anthropology (pp. 456–474). New York, NY: Routledge Handbooks Online. Scholar
  96. Mantzavinos, C. (2011). Institutions. In I. C. Jarvie & J. Zamora-Bonilla (Eds.), The sage handbook of the Philisophy of social sciences (pp. 399–412). London: Sage.Google Scholar
  97. Mayoral, A., Toumazet, J.-P., Simon, F.-X., Vautier, F., & Peiry, J.-L. (2017). The highest gradient model: A new method for analytical assessment of the efficiency of LiDAR-derived visualization techniques for landform detection and mapping. Remote Sensing, 9(2), 120. Scholar
  98. McGrain, P. (1983). The Geologic Story of Kentucky. XI 8. Lexington, KY: Kentucky Geological Survey.Google Scholar
  99. McGrain, P., & Currens, J. C. (1978). The Topography of Kentucky. X 25. Lexington, KY: Kentucky Geological Survey.Google Scholar
  100. McKinnon, D. P. (2009). Exploring settlement patterning at a premier Caddo mound site in the Red River Great Bend region. Southeastern Archaeology, 28(2), 248–258.Google Scholar
  101. Milner, G. R. (2004). The Moundbuilders: Ancient peoples of eastern North America. London: Thames & Hudson.Google Scholar
  102. Mlekuž, D. (2013). Messy landscapes: LiDAR and the practices of landscaping. In D. C. Cowley & R. S. Opitz (Eds.), Interpreting archaeological topography: Lasers, 3D data, observation, visualisation and applications (pp. 90–101). Oxford: Oxbow Books.Google Scholar
  103. Mueller, N. G. (2013). Mound centers and seed security: A comparative analysis of botanical assemblages from middle woodland sites in the lower Illinois Valley. New York: Springer. Scholar
  104. Mueller, N. G. (2018). The earliest occurrence of a newly described domesticate in eastern North America: Adena/Hopewell communities and agricultural innovation. Journal of Anthropological Archaeology, 49, 39–50. Scholar
  105. Mueller, N. G., Fritz, G. J., Patton, P., Carmody, S., & Horton, E. T. (2017). Growing the lost crops of eastern North America’s original agricultural system. Nature Plants, 3(7), 17092. Scholar
  106. Opitz, R. S. (2013). An overview of airborne and terrestrial laser scanning in archaeology. In R. S. Opitz & D. C. Cowley (Eds.), Interpreting archaeological topography: Airborne laser scanning, 3D data, and ground observation (pp. 13–31). Oxford: Oxbow Books.Google Scholar
  107. Opitz, R. S., & Cowley, D. C. (2013). Interpreting archaeological topography: Lasers, 3D data, observation, visualisation and applications. In R. S. Opitz & D. C. Cowley (Eds.), Interpreting archaeological topography: Airborne laser scanning, 3D data, and ground observation (pp. 1–12). Oxford: Oxbow Books.Google Scholar
  108. Otto, M. P., & Redmond, B. G. (Eds.). (2008). Transitions: Archaic and early woodland research in the Ohio country. Athens: Ohio University Press: In association with the Ohio Archaeological Council.Google Scholar
  109. Pluckhahn, T. J., & Thompson, V. D. (2012). Integrating LiDAR data and conventional mapping of the fort center site in south-Central Florida: A comparative approach. Journal of Field Archaeology, 37(4), 289–301. Scholar
  110. Pollack, D., & Schlarb, E. J. (2013). The Adena mortuary landscape: Off-mound rituals and burial mounds. In A. P. Wright & E. R. Henry (Eds.), Early and middle woodland landscapes of the southeast (pp. 45–55). Gainesville: University Press of Florida.Google Scholar
  111. Pollack, D., Schlarb, E. J., Sharp, W. E., & Tune, T. W. (2005). Walker-Noe: An early middle woodland Adena mound in Central Kentucky. In D. Applegate & R. C. Mainfort Jr. (Eds.), Woodland period systematics in the middle Oiho Valley (pp. 64–75). Tuscaloosa: University Alabama Press.Google Scholar
  112. Prufer, K. M., Thompson, A. E., & Kennett, D. J. (2015). Evaluating airborne LiDAR for detecting settlements and modified landscapes in disturbed tropical environments at Uxbenká, Belize. Journal of Archaeological Science, 57, 1–13. Scholar
  113. Quintus, S., Clark, J. T., Day, S. S., & Schwert, D. P. (2015). Investigating regional patterning in archaeological remains by pairing extensive survey with a Lidar dataset: The Case of the Manu’a group, American Samoa. Journal of Archaeological Science: Reports, 2, 677–687. Scholar
  114. Quintus, S., Day, S. S., & Smith, N. J. (2017). The efficacy and analytical importance of manual feature extraction using Lidar datasets. Advances in Archaeological Practice, 5(4), 351–364. Scholar
  115. Rafinesque, C. S. (1820). Map of the lower Alleghanee monuments on North Elkhorn Creek. Map Stored at the University of Kentucky Special Collections Library.Google Scholar
  116. Rafinesque, C. S. (1836). A life of travels and researches in North America and South Europe. Philadelphia: Turner.Google Scholar
  117. Randall, A. R. (2014). LiDAR-aided reconnaissance and reconstruction of lost landscapes: An example of freshwater Shell mounds (ca. 7500–500 Cal b.p.) in northeastern Florida. Journal of Field Archaeology, 39(2), 162–179. Scholar
  118. Richmond, M. D., & Kerr, J. P. (2005). Middle woodland ritualism in the central bluegrass: Evidence from the Amburgey site, Montgomery County, Kentucky. In D. Applegate & R. C. Mainfort Jr. (Eds.), Woodland period systematics in the middle Oiho Valley (pp. 76–93). Tuscaloosa: University of Alabama Press.Google Scholar
  119. Riley, M. A., & Tiffany, J. A. (2014). Using LiDAR data to locate a middle woodland enclosure and associated mounds, Louisa County, Iowa. Journal of Archaeological Science, 52, 143–151. Scholar
  120. Risbøl, O., Gjertsen, A. K., & Skare, K. (2006). Airborne Laser Scanning of Cultural Remains in Forests – Some Preliminary Results from a Norwegian Project. Proceedings of the 2nd International Conference on Remoete Sensing in Archaeology: From Space to Place, 1568, 107–112.Google Scholar
  121. Rochelo, M. J., Davenport, C., & Selch, D. (2015). Revealing pre-historic native American belle glade earthworks in the Northern Everglades utilizing airborne Lidar. Journal of Archaeological Science: Reports, 2, 624–643. Scholar
  122. Romain, W. F. (2000). Mysteries of the Hopewell: Astronomers, geometers, and magicians of the eastern woodlands. Akron, Ohio: University of Akron Press.Google Scholar
  123. Romain, W. F. (2009). Shamans of the lost world: A cognitive approach to the prehistoric religion of the Ohio Hopewell. AltaMira Press.Google Scholar
  124. Romain, William F., and Jarrod Burks. 2008. LiDAR imaging of the great Hopewell road. Current Research in Ohio Archaeology.
  125. Rosenswig, R. M., López-Torrijos, R., Antonelli, C. E., & Mendelsohn, R. R. (2013). LiDAR mapping and surface survey of the Izapa state on the tropical Piedmont of Chiapas, Mexico. Journal of Archaeological Science, 40(3), 1493–1507. Scholar
  126. Schindling, J., & Gibbes, C. (2014). LiDAR as a tool for archaeological research: A Case study. Archaeological and Anthropological Sciences., 6(4), 411–423. Scholar
  127. Schlarb, E. J. (2005). The bullock site: A forgotten mound in Woodford County, Kentucky. In D. Applegate & R. C. Mainfort Jr. (Eds.), Woodland period systematics in the middle Ohio Valley (pp. 52–63). Tuscaloosa: University of Alabama Press.Google Scholar
  128. Schmidt, A. (2013). Earth resistance for archaeologists. Lanham: Rowman & Littlefield.Google Scholar
  129. Sherwood, S. C., & Kidder, T. R. (2011). The Davincis of dirt: Geoarchaeological perspectives on native American mound building in the Mississippi River basin. Journal of Anthropological Archaeology, 30(1), 69–87. Scholar
  130. Smith, B. D. (2001). Low-level food production. Journal of Archaeological Research, 9(1), 1–43.Google Scholar
  131. Soil Survey Staff. 2017. Web Soil Survey. Reference. United States Department of Agriculture Natural Resources Conservation Service (NRCS) Web Soil Survey. 2017.Google Scholar
  132. Souza, J. G. d., Schaan, D. P., Robinson, M., Barbosa, A. D., Aragão, L. E. O. C., Marimon, B. H., Marimon, B. S., et al. (2018). Pre-Columbian earth-builders settled along the entire southern rim of the Amazon. Nature Communications, 9(1), 1125. Scholar
  133. Squire, E. G., & Davis, E. H. (1998). Ancient monuments of the Mississippi Valley. In 150th anniversary ed. Smithsonian: Books.Google Scholar
  134. Stenborg, P., Schaan, D. P., & Figueiredo, C. G. (2018). Contours of the past: LiDAR data expands the limits of late pre-Columbian human settlement in the Santarém region, lower Amazon. Journal of Field Archaeology, 43(1), 44–57. Scholar
  135. Struever, S., & Houart, G. L. (1972). An Analysis of the Hopewell Interaction Sphere. In E. Wilmsen (Ed.), Social Exchange and Interaction (pp. 47–79. Anthropological Papers 46.). Ann Arbor, Michigan: Museum of Anthroplogy, University of Michigan.Google Scholar
  136. Ur, J. (2003). CORONA satellite photography and ancient road networks: A northern Mesopotamian Case study. Antiquity, 77(295), 102–115. Scholar
  137. VanValkenburgh, P., Walker, C. P., & Sturm, J. O. (2015). Gradiometer and ground-penetrating radar survey of two Reducción settlements in the Zaña Valley, Peru. Archaeological Prospection, 22(2), 117–129. Scholar
  138. Venter, M. L., Shields, C. R., & Ordóñez, M. D. C. (2018). Mapping Matacanela: The complementary work of LiDAR and topographical survey in southern Veracruz, Mexico. Ancient Mesoamerica, 29(1), 81–92. Scholar
  139. Webb, W. S. (1941). Mt. Horeb Earthworks: Site 1, and the Drake Mound, Site 11, Fayette County, Kentucky. Reports in Anthropology and Archaeology, v. 5, no. 2. Lexington, Ky: University of Kentucky.Google Scholar
  140. Webb, W. S., & Baby, R. S. (1957). The Adena people, no. 2. Columbus: Ohio Historical Society Scholar
  141. Webb, W. S., & Snow, C. E. (1945). The Adena People. Reports in anthropology and archaeology, vol. 6. University of Kentucky: Lexington.Google Scholar
  142. Wright, A. P. (2014). History, monumentality, and interaction in the Appalachian summit middle woodland. American Antiquity, 79(2), 277–294.Google Scholar
  143. Wright, A. P. (2017). Local and ‘global’ perspectives on the middle woodland southeast. Journal of Archaeological Research, 25(1), 35–83. Scholar
  144. Wright, A. P., & Henry, E. R. (Eds.). (2013). Early and middle woodland landscapes of the southeast. University Press of Florida.Google Scholar
  145. Wright, A. P., & Loveland, E. (2015). Ritualised craft production at the Hopewell periphery: New evidence from the Appalachian summit. Antiquity, 89(343), 137–153. Scholar
  146. Zakšek, K., Oštir, K., & Kokalj, Ž. (2011). Sky-view factor as a relief visualization technique. Remote Sensing, 3(2), 398–415. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of AnthropologyColorado State UniversityFort CollinsUSA
  2. 2.Center for Research in Archaeogeophysics and GeoarchaeologyColorado State UniversityFort CollinsUSA
  3. 3.Kentucky Transportation CabinetFrankfortUSA
  4. 4.Department of AnthropologyWashington University in St. LouisSt. LouisUSA
  5. 5.Geoarchaeology LaboratoryWashington University in St. LouisSt. LouisUSA

Personalised recommendations