Do Uncharred Plants Preserve Original Carbon and Nitrogen Isotope Compositions?

  • Jessica Z. MetcalfeEmail author
  • Jim I. Mead


The isotopic compositions of plants can provide significant insights into paleodiets, ancient agricultural activities, and past environments. Isotopic compositions of charred (aka carbonized) ancient plant remains are typically preferred over those of uncharred/uncarbonized plants, both because charred plants are more commonly preserved and because early research suggested they experience less post-depositional isotopic alteration. In this paper, we re-explore the question of whether uncharred plants experience large-magnitude post-depositional changes in carbon and nitrogen isotope compositions by analyzing Terminal Pleistocene–Early Holocene plant specimens from rockshelters in the Escalante River Basin (Colorado Plateau, southeastern Utah). Several lines of evidence, including C3-CAM differences, plant-part comparisons, and dietary estimates from ancient herbivore collagen, suggest that the original carbon isotope compositions of these plants have not been significantly altered. The preservation status of plant nitrogen isotope compositions is equivocal. The direction of temporal shifts in plant δ15N matches global trends and the magnitude of the shift may have been exacerbated by the extinction of megafauna in an arid environment. However, the Pleistocene plant δ15N values are higher than would be expected based on herbivore bone collagen δ15N. Nevertheless, in contrast to previous research, the ancient uncharred plants in this study did not have exceptionally high δ15N values (> + 25‰). Overall, our research suggests that uncharred plants could be useful substrates for isotopic paleodietary and/or paleoenvironmental studies.


C3 plant CAM plant Carbon isotope Nitrogen isotope Diagenesis Colorado Plateau 



We thank Janet and David Gillette (Museum of Northern Arizona) and John Spence (National Park Service) for access to samples, Paul Szpak and Ed Grant for valuable discussions, Michael Richards and Fred Longstaffe for laboratory facilities and equipment, and Reba Macdonald, Christina Cheung, Joe Hepburn, and Grace Yau for laboratory assistance. Paul Szpak and three anonymous reviewers provided valuable comments on earlier drafts of this manuscript. Funding for this study was provided by a Killam Postdoctoral Research Fellowship, a Social Science and Humanities Research Council of Canada Banting Postdoctoral Research Fellowship, and the Larry D. Agenbroad Legacy Fund for Research from The Mammoth site of Hot Springs South Dakota.

Supplementary material

10816_2018_9390_MOESM1_ESM.xlsx (365 kb)
ESM 1 (XLSX 365 kb)


  1. Agenbroad, L. D., Mead, J. I., Mead, E. M., & Elder, D. (1989). Archaeology, alluvium, and cave stratigraphy: the record from Bechan cave, Utah. Kiva, 54, 335–351.CrossRefGoogle Scholar
  2. Aguilera, M., Araus, J. L., Voltas, J., Rodriguez-Ariza, M. O., Molina, F., Rovira, N., Buxo, R., & Ferrio, J. P. (2008). Stable carbon and nitrogen isotopes and quality traits of fossil cereal grains provide clues on sustainability at the beginnings of Mediterranean agriculture. Rapid Communications in Mass Spectrometry, 22, 1653–1663.CrossRefGoogle Scholar
  3. Ambrose, S. H. (1990). Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science, 17, 431–451.CrossRefGoogle Scholar
  4. Amundson, R., Austin, A. T., Schuur, E. A. G., Yoo, K., Matzek, V., Kendall, C., Uebersax, A., Brenner, D., & Baisden, W. T. (2003). Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochemical Cycles, 17, 1031. Scholar
  5. Anderson, R. S., Betancourt, J. L., Mead, J. I., Hevly, R. H., & Adam, D. P. (2000). Middle- and Late-Wisconsin paleobotanic and paleoclimatic records from the southern Colorado Plateau, USA. Palaeogeography Palaeoclimatology Palaeoecology, 155, 31–57.CrossRefGoogle Scholar
  6. Araus, J. L., Febrero, A., Buxó, R., Rodrı́guez-Ariza, M. O., Molina, F., Camalich, M.a. D., Martı́n, D., & Voltas, J. (1997). Identification of ancient irrigation practices based on the carbon isotope discrimination of plant seeds: a case study from the South-East Iberian Peninsula. Journal of Archaeological Science, 24, 729–740.CrossRefGoogle Scholar
  7. Austin, A. T., & Vitousek, P. M. (1998). Nutrient dynamics on a precipitation gradient in Hawai'i. Oecologia, 113, 519–529.CrossRefGoogle Scholar
  8. Badeck, F. W., Tcherkez, G., Nogues, S., Piel, C., & Ghashghaie, J. (2005). Post-photosynthetic fractionation of stable carbon isotopes between plant organs—a widespread phenomenon. Rapid Communications in Mass Spectrometry, 19, 1381–1391.CrossRefGoogle Scholar
  9. Baker, M. J., Trevisan, J., Bassan, P., Bhargava, R., Butler, H. J., Dorling, K. M., Fielden, P. R., Fogarty, S. W., Fullwood, N. J., Heys, K. A., Hughes, C., Lasch, P., Martin-Hirsch, P. L., Obinaju, B., Sockalingum, G. D., Sulé-Suso, J., Strong, R. J., Walsh, M. J., Wood, B. R., Gardner, P., & Martin, F. L. (2014). Using Fourier transform IR spectroscopy to analyze biological materials. Nature Protocols, 9, 1771–1791.CrossRefGoogle Scholar
  10. Benner, R., Fogel, M. L., & Sprague, E. K. (1991). Diagenesis of belowground biomass of Spartina alterniflora in salt-marsh sediments. Limnology and Oceanography, 36, 1358–1374.CrossRefGoogle Scholar
  11. Bland, H.A., van Bergen, P.F., Carter, J.F., & Evershed, R.P. (1998). Early diagenetic transformations of proteins and polysaccharides in archaeological plant remains. Nitrogen-Containing Macromolecules in the Bio- and Geosphere, American Chemical Society, pp. 113–131.Google Scholar
  12. Blinnikov, M. S., Gaglioti, B. V., Walker, D. A., Wooller, M. J., & Zazula, G. D. (2011). Pleistocene graminoid-dominated ecosystems in the Arctic. Quaternary Science Reviews, 30, 2906–2929.CrossRefGoogle Scholar
  13. Bocherens, H., Grandal-d'Anglade, A., & Hobson, K. A. (2014). Pitfalls in comparing modern hair and fossil bone collagen C and N isotopic data to reconstruct ancient diets: a case study with cave bears (Ursus spelaeus). Isotopes in Environmental and Health Studies, 50, 291–299.CrossRefGoogle Scholar
  14. Bogaard, A., Heaton, T. H. E., Poulton, P., & Merbach, I. (2007). The impact of manuring on nitrogen isotope ratios in cereals: archaeological implications for reconstruction of diet and crop management practices. Journal of Archaeological Science, 34, 335–343.CrossRefGoogle Scholar
  15. Bogaard, A., Fraser, R., Heaton, T. H. E., Wallace, M., Vaiglova, P., Charles, M., Jones, G., Evershed, R. P., Styring, A. K., Andersen, N. H., Arbogast, R. M., Bartosiewic, L., Gardeisen, A., Kanstrup, M., Maier, U., Marinova, E., Ninov, L., Schafer, M., & Stephan, E. (2013). Crop manuring and intensive land management by Europe’s first farmers. Proceedings of the National Academy of Sciences of the United States of America, 110, 12589–12594.CrossRefGoogle Scholar
  16. Boström, B., Comstedt, D., & Ekblad, A. (2007). Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter. Oecologia, 153, 89–98.CrossRefGoogle Scholar
  17. Brueggemann, N., Gessler, A., Kayler, Z., Keel, S. G., Badeck, F., Barthel, M., Boeckx, P., Buchmann, N., Brugnoli, E., Esperschuetz, J., Gavrichkova, O., Ghashghaie, J., Gomez-Casanovas, N., Keitel, C., Knohl, A., Kuptz, D., Palacio, S., Salmon, Y., Uchida, Y., & Bahn, M. (2011). Carbon allocation and carbon isotope fluxes in the plant–soil–atmosphere continuum: a review. Biogeosciences, 8, 3457–3489.CrossRefGoogle Scholar
  18. Casey, M. M., & Post, D. M. (2011). The problem of isotopic baseline: reconstructing the diet and trophic position of fossil animals. Earth Science Reviews, 106, 131–148.CrossRefGoogle Scholar
  19. Caut, S., Angulo, E., & Courchamp, F. (2009). Variation in discrimination factors (δ15N and δ13C): the effect of diet isotopic values and applications for diet reconstruction. Journal of Applied Ecology, 46, 443–453.CrossRefGoogle Scholar
  20. Cerling, T. E., Harris, J. M., & Leakey, M. G. (1999). Browsing and grazing in elephants: the isotope record of modern and fossil proboscideans. Oecologia, 120, 364–374.CrossRefGoogle Scholar
  21. Cerling, T. E., Harris, J. M., & Passey, B. H. (2003). Diets of East African bovidae based on stable isotope analysis. Journal of Mammalogy, 84, 456–470.CrossRefGoogle Scholar
  22. Cerling, T. E., Hart, J. A., & Hart, T. B. (2004). Stable isotope ecology in the Ituri Forest. Oecologia, 138, 5–12.CrossRefGoogle Scholar
  23. Cerling, T. E., Wittemyer, G., Ehleringer, J. R., Remien, C. H., & Douglas-Hamilton, I. (2009). History of animals using isotope records (HAIR): a 6-year dietary history of one family of African elephants. Proceedings of the National Academy of Sciences, 106, 8093–8100.CrossRefGoogle Scholar
  24. Cernusak, L. A., Tcherkez, G., Keitel, C., Cornwell, W. K., Santiago, L. S., Knohl, A., Barbour, M. M., Williams, D. G., Reich, P. B., Ellsworth, D. S., Dawson, T. E., Griffiths, H. G., Farquhar, G. D., & Wright, I. J. (2009). Viewpoint: why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Functional Plant Biology, 36, 199–213.CrossRefGoogle Scholar
  25. Charles, M., Forster, E., Wallace, M., & Jones, G. (2015). “Nor ever lightning char thy grain” 1: establishing archaeologically relevant charring conditions and their effect on glume wheat grain morphology. STAR: Science & Technology of Archaeological Research, 1, 1–6.CrossRefGoogle Scholar
  26. Choi, W. J., Lee, S. M., Ro, H. M., Kim, K. C., & Yoo, S. H. (2002). Natural 15N abundances of maize and soil amended with urea and composted pig manure. Plant and Soil, 245, 223–232.CrossRefGoogle Scholar
  27. Codron, J., Codron, D., Lee-Thorp, J. A., Sponheimer, M., Bond, W. J., de Ruiter, D., & Grant, R. (2005). Taxonomic, anatomical, and spatio-temporal variations in the stable carbon and nitrogen isotopic compositions of plants from an African savanna. Journal of Archaeological Science, 32, 1757–1772.CrossRefGoogle Scholar
  28. Codron, D., Lee-Thorp, J. A., Sponheimer, M., de Ruiter, D., & Codron, J. (2006). Inter- and intrahabitat dietary variability of chacma baboons (Papio ursinus) in South African savannas based on fecal δ 13C, δ 15N, and %N. American Journal of Physical Anthropology, 129, 204–214.CrossRefGoogle Scholar
  29. Codron, D., Lee-Thorp, J. A., Sponheimer, M., & Codron, J. (2007). Nutritional content of savanna plant foods: implications for browser/grazer models of ungulate diversification. European Journal of Wildlife Research, 53, 100–111.CrossRefGoogle Scholar
  30. Codron, J., Lee-Thorp, J. A., Sponheimer, M., & Codron, D. (2013). Plant stable isotope composition across habitat gradients in a semi-arid savanna: implications for environmental reconstruction. Journal of Quaternary Science, 28, 301–310.CrossRefGoogle Scholar
  31. Connin, S. L., Feng, X., & Virginia, R. A. (2001). Isotopic discrimination during long-term decomposition in an arid land ecosystem. Soil Biology and Biochemistry, 33, 41–51.CrossRefGoogle Scholar
  32. Craine, J. M., Elmore, A. J., Aidar, M. P. M., Bustamante, M., Dawson, T. E., Hobbie, E. A., Kahmen, A., Mack, M. C., McLauchlan, K. K., Michelsen, A., Nardoto, G. B., Pardo, L. H., Penuelas, J., Reich, P. B., Schuur, E. A. G., Stock, W. D., Templer, P. H., Virginia, R. A., Welker, J. M., & Wright, I. J. (2009). Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist, 183, 980–992.CrossRefGoogle Scholar
  33. Crawford, T. W., Rendig, V. V., & Broadbent, F. E. (1982). Sources, fluxes, and sinks of nitrogen during early reproductive growth of maize (Zea mays L.). Plant Physiology, 70, 1654–1660.CrossRefGoogle Scholar
  34. Davis, O. K., Agenbroad, L., Martin, P. S., & Mead, J. I. (1984). The Pleistocene dung blanket of Bechan cave, Utah, USA. Carnegie Museum of Natural History Special Publication, 267–282.Google Scholar
  35. DeNiro, M. J. (1985). Post-mortem preservation and alteration of "in vivo" bone collagen ratios: implications for paleodietary analysis. Nature, 317, 806–809.CrossRefGoogle Scholar
  36. DeNiro, M. J., & Hastorf, C. A. (1985). Alteration of 15N/14N and 13C/12C ratios of plant matter during the initial stages of diagenesis: studies utilizing archaeological specimens from Peru. Geochimica et Cosmochimica Acta, 49, 97–115.CrossRefGoogle Scholar
  37. Díaz, F. P., Frugone, M., Gutiérrez, R. A., & Latorre, C. (2016). Nitrogen cycling in an extreme hyperarid environment inferred from δ 15N analyses of plants, soils and herbivore diet. Scientific Reports, 6, 22226.CrossRefGoogle Scholar
  38. Doughty, C. E., Wolf, A., & Malhi, Y. (2013). The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia. Nature Geoscience, 6, 761.CrossRefGoogle Scholar
  39. Doughty, C. E., Roman, J., Faurby, S., Wolf, A., Haque, A., Bakker, E. S., Malhi, Y., Dunning, J. B., & Svenning, J.-C. (2016). Global nutrient transport in a world of giants. Proceedings of the National Academy of Sciences, 113, 868–873.CrossRefGoogle Scholar
  40. Drucker, D. G., Bridault, A., Hobson, K. A., Szuma, E., & Bocherens, H. (2008). Can carbon-13 in large herbivores reflect the canopy effect in temperate and boreal ecosystems? Evidence from modern and ancient ungulates. Palaeogeography Palaeoclimatology Palaeoecology, 266, 69–82.CrossRefGoogle Scholar
  41. du Toit, J. T., & Owen-Smith, N. (1989). Body size, population metabolism, and habitat specialization among large African herbivores. The American Naturalist, 133, 736–740.CrossRefGoogle Scholar
  42. Ehleringer, J. R., Buchmann, N., & Flanagan, L. B. (2000). Carbon isotope ratios in belowground carbon cycle processes. Ecological Applications, 10, 412–422.CrossRefGoogle Scholar
  43. Erskine, P. D., Bergstrom, D. M., Schmidt, S., Stewart, G. R., Tweedie, C. E., & Shaw, J. D. (1998). Subantarctic Macquarie Island—a model ecosystem for studying animal-derived nitrogen sources using 15N natural abundance. Oecologia, 117, 187–193.CrossRefGoogle Scholar
  44. Evans, R. D., & Ehleringer, J. R. (1993). A break in the nitrogen cycle in aridlands? Evidence from δ 15N of soils. Oecologia, 94, 314–317.CrossRefGoogle Scholar
  45. Evans, R. D., & Ehleringer, J. R. (1994). Water and nitrogen dynamics in an arid woodland. Oecologia, 99, 233–242.CrossRefGoogle Scholar
  46. Evershed, R. P., Bland, H. A., van Bergen, P. F., Carter, J. F., Horton, M. C., & Rowley-Conwy, P. A. (1997). Volatile compounds in archaeological plant remains and the Maillard reaction during decay of organic matter. Science, 278, 432–433.CrossRefGoogle Scholar
  47. Fiorentino, G., Caracuta, V., Casiello, G., Longobardi, F., & Sacco, A. (2012). Studying ancient crop provenance: implications from δ13C and δ15N values of charred barley in a Middle Bronze Age silo at Ebla (NW Syria). Rapid Communications in Mass Spectrometry, 26, 327–335.CrossRefGoogle Scholar
  48. Fiorentino, G., Ferrio, J. P., Bogaard, A., Araus, J. L., & Riehl, S. (2015). Stable isotopes in archaeobotanical research. Vegetation History and Archaeobotany, 24, 215–227.CrossRefGoogle Scholar
  49. Flanagan, L. B., Cook, C. S., & Ehleringer, J. R. (1997). Unusually low carbon isotope ratios in plants from hanging gardens in southern Utah. Oecologia, 111, 481–489.CrossRefGoogle Scholar
  50. Fleming, T. H., Nuñez, R. A., & Sternberg, L.d. S. L. (1993). Seasonal changes in the diets of migrant and non-migrant nectarivorous bats as revealed by carbon stable isotope analysis. Oecologia, 94, 72–75.Google Scholar
  51. Francey, R. J., Allison, C. E., Etheridge, D. M., Trudinger, C. M., Enting, I. G., Leuenberger, M., Langenfelds, R. L., Michel, E., & Steele, L. P. (1999). A 1000-year high precision record of δ 13C in atmospheric CO2. Tellus B: Chemical and Physical Meteorology, 51, 170–193.CrossRefGoogle Scholar
  52. Frank, D. A., & Evans, R. D. (1997). Effects of native grazers on grassland N cycling in Yellowstone National Park. Ecology, 78, 2238–2248.CrossRefGoogle Scholar
  53. Frank, D. A., & Zhang, Y. M. (1997). Ammonia volatilization from a seasonally and spatially variable grazed grassland: Yellowstone National Park. Biogeochemistry, 36, 189–203.CrossRefGoogle Scholar
  54. Frank, D. A., Evans, R. D., & Tracy, B. F. (2004). The role of ammonia volatilization in controlling the 15N abundance of a grazed grassland. Biogeochemistry, 68, 169–178.CrossRefGoogle Scholar
  55. Fraser, R. A., Bogaard, A., Heaton, T., Charles, M., Jones, G., Christensen, B. T., Halstead, P., Merbach, I., Poulton, P. R., Sparkes, D., & Styring, A. K. (2011). Manuring and stable nitrogen isotope ratios in cereals and pulses: towards a new archaeobotanical approach to the inference of land use and dietary practices. Journal of Archaeological Science, 38, 2790–2804.CrossRefGoogle Scholar
  56. Fraser, R. A., Bogaard, A., Charles, M., Styring, A. K., Wallace, M., Jones, G., Ditchfield, P., & Heaton, T. H. E. (2013). Assessing natural variation and the effects of charring, burial and pre-treatment on the stable carbon and nitrogen isotope values of archaeobotanical cereals and pulses. Journal of Archaeological Science, 40, 4754–4766.CrossRefGoogle Scholar
  57. Friedli, H. H., Lotscher, H., Oescheger, U., Siegenthaler, U., & Stauffer, B. (1986). Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature, 324, 237–238.CrossRefGoogle Scholar
  58. Ghashghaie, J., & Badeck, F. W. (2014). Opposite carbon isotope discrimination during dark respiration in leaves versus roots—a review. New Phytologist, 201, 751–769.CrossRefGoogle Scholar
  59. Gill, J. L. (2014). Ecological impacts of the late Quaternary megaherbivore extinctions. New Phytologist, 201, 1163–1169.CrossRefGoogle Scholar
  60. Handley, L. L., Austin, A. T., Stewart, G. R., Robinson, D., Scrimgeour, C. M., Raven, J. A., Heaton, T. H. E., & Schmidt, S. (1999). The 15N natural abundance (δ 15N) of ecosystem samples reflects measures of water availability. Functional Plant Biology, 26, 185–199.Google Scholar
  61. Heaton, T. H. E., Jones, G., Halstead, P., & Tsipropoulos, T. (2009). Variations in the 13C/12C ratios of modern wheat grain, and implications for interpreting data from Bronze Age Assiros Toumba, Greece. Journal of Archaeological Science, 36, 2224–2233.CrossRefGoogle Scholar
  62. Hobbie, E. A., & Ouimette, A. P. (2009). Controls of nitrogen isotope patterns in soil profiles. Biogeochemistry, 95, 355–371.CrossRefGoogle Scholar
  63. Hobbie, E. A., & Werner, R. A. (2004). Intramolecular, compound-specific, and bulk carbon isotope patterns in C3 and C4 plants: a review and synthesis. New Phytologist, 161, 371–385.CrossRefGoogle Scholar
  64. Hobbie, E. A., Macko, S. A., & Williams, M. (2000). Correlations between foliar δ 15N and nitrogen concentrations may indicate plant-mycorrhizal interactions. Oecologia, 122, 273–283.CrossRefGoogle Scholar
  65. Hofmeister, J., Hošek, J., Bůzek, F., & Roleček, J. (2012). Foliar N concentration and δ15N signature reflect the herb layer species diversity and composition in oak-dominated forests. Applied Vegetation Science, 15, 318–328.CrossRefGoogle Scholar
  66. Hogberg, P., Hogbom, L., Schinkel, H., Hogberg, M., Johannisson, C., & Wallmark, H. (1996). 15N abundance of surface soils, roots and mycorrhizas in profiles of European forest soils. Oecologia, 108, 207–214.CrossRefGoogle Scholar
  67. Kanstrup, M., Thomsen, I. K., Mikkelsen, P. H., & Christensen, B. T. (2012). Impact of charring on cereal grain characteristics: linking prehistoric manuring practice to δ15N signatures in archaeobotanical material. Journal of Archaeological Science, 39, 2533–2540.CrossRefGoogle Scholar
  68. King, J. Y., Brandt, L. A., & Adair, E. C. (2012). Shedding light on plant litter decomposition: advances, implications and new directions in understanding the role of photodegradation. Biogeochemistry, 111, 57–81.CrossRefGoogle Scholar
  69. Kluge, M., Brulfert, J., Ravelomanana, D., Lipp, J., & Ziegler, H. (1991). Crassulacean acid metabolism in Kalanchoë species collected in various climatic zones of Madagascar: a survey by δ 13C analysis. Oecologia, 88, 407–414.CrossRefGoogle Scholar
  70. Knapp, A. K., Blair, J. M., Briggs, J. M., Collins, S. L., Hartnett, D. C., Johnson, L. C., & Towne, E. G. (1999). The keystone role of bison in North American tallgrass prairie. Bioscience, 49, 39–50.CrossRefGoogle Scholar
  71. Koch, P., Behrensmeyer, A. K., & Fogel, M. L. (1991). The isotopic ecology of plants and animals in Amboseli National Park, Kenya. Carnegie Institution Geophysics Laboratory Annual Report, 2250, 163–171.Google Scholar
  72. Kohn, M. J. (2010). Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proceedings of the National Academy of Sciences, 107, 19691–19695.CrossRefGoogle Scholar
  73. Kolb, K. J., & Evans, R. D. (2002). Implications of leaf nitrogen recycling on the nitrogen isotope composition of deciduous plant tissues. New Phytologist, 156, 57–64.CrossRefGoogle Scholar
  74. Kramer, M. G., Sollins, P., Sletten, R. S., & Swart, P. K. (2003). N isotope fractionation and measures of organic matter alteration during decomposition. Ecology, 84, 2021–2025.CrossRefGoogle Scholar
  75. Kristensen, D. K., Kristensen, E., Forchhammer, M. C., Michelsen, A., & Schmidt, N. M. (2011). Arctic herbivore diet can be inferred from stable carbon and nitrogen isotopes in C3 plants, faeces, and wool. Canadian Journal of Zoology-Revue Canadienne De Zoologie, 89, 892–899.CrossRefGoogle Scholar
  76. Kropf, M., Mead, J. I., & Anderson, R. S. (2007). Dung, diet, and the paleoenvironment of the extinct shrub-ox (Euceratherium collinum) on the Colorado Plateau, USA. Quaternary Research, 67, 143–151.CrossRefGoogle Scholar
  77. Krull, E. S., Bestland, E. A., & Gates, W. P. (2016). Soil organic matter decomposition and turnover in a tropical Ultisol: evidence from δ 13C, δ 15N and geochemistry. Radiocarbon, 44, 93–112.CrossRefGoogle Scholar
  78. Leavitt, S. W., & Long, A. (1982). Evidence for 13C/12C fractionation between tree leaves and wood. Nature, 298, 742–744.CrossRefGoogle Scholar
  79. Lee, H., Rahn, T., & Throop, H. (2011). An accounting of C-based trace gas release during abiotic plant litter degradation. Global Change Biology, 18, 1185–1195.CrossRefGoogle Scholar
  80. Liu, D., Zhu, W., Wang, X., Pan, Y., Wang, C., Xi, D., Bai, E., Wang, Y., Han, X., & Fang, Y. (2017). Abiotic versus biotic controls on soil nitrogen cycling in drylands along a 3200km transect. Biogeosciences, 14, 989.CrossRefGoogle Scholar
  81. Long, E. S., Sweitzer, R. A., Diefenbach, D. R., & Ben-David, M. (2005). Controlling for anthropogenically induced atmospheric variation in stable carbon isotope studies. Oecologia, 146, 148–156.CrossRefGoogle Scholar
  82. Makarewicz, C. A., & Sealy, J. (2015). Dietary reconstruction, mobility, and the analysis of ancient skeletal tissues: expanding the prospects of stable isotope research in archaeology. Journal of Archaeological Science, 56, 146–158.CrossRefGoogle Scholar
  83. Marino, B. D., & DeNiro, M. J. (1987). Isotopic analysis of archaeobotanicals to reconstruct past climates: effects of activities associated with food preparation on carbon, hydrogen and oxygen isotope ratios of plant cellulose. Journal of Archaeological Science, 14, 537–548.CrossRefGoogle Scholar
  84. Martinelli, L. A., Piccolo, M. C., Townsend, A. R., Vitousek, P. M., Cuevas, E., Mcdowell, W., Robertson, G. P., Santos, O. C., & Treseder, K. (1999). Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. In A. R. Townsend (Ed.), New perspectives on nitrogen cycling in the temperate and tropical Americas: report of the international SCOPE nitrogen project (pp. 45–65). Dordrecht: Springer Netherlands.CrossRefGoogle Scholar
  85. McCalley, C. K., & Sparks, J. P. (2009). Abiotic gas formation drives nitrogen loss from a desert ecosystem. Science, 326, 837–840.CrossRefGoogle Scholar
  86. McLauchlan, K. K., Ferguson, C. J., Wilson, I. E., Ocheltree, T. W., & Craine, J. M. (2010). Thirteen decades of foliar isotopes indicate declining nitrogen availability in central north American grasslands. New Phytologist, 187, 1135–1145.CrossRefGoogle Scholar
  87. McLauchlan, K. K., Williams, J. J., Craine, J. M., & Jeffers, E. S. (2013). Changes in global nitrogen cycling during the Holocene epoch. Nature, 495, 352.CrossRefGoogle Scholar
  88. Mead, J. I., & Agenbroad, L. D. (1992). Isotope dating of Pleistocene dung deposits from the Colorado Plateau, Arizona and Utah. Radiocarbon, 34, 1–19.CrossRefGoogle Scholar
  89. Medina, E., Sternberg, L., & Cuevas, E. (1991). Vertical stratification of δ 13C values in closed natural and plantation forests in the Luquillo mountains, Puerto Rico. Oecologia, 87, 369–372.CrossRefGoogle Scholar
  90. Melillo, J. M., Aber, J. D., Linkins, A. E., Ricca, A., Fry, B., & Nadelhoffer, K. J. (1989). Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant and Soil, 115, 189–198.CrossRefGoogle Scholar
  91. Muzuka, A. N. N. (1999). Isotopic compositions of tropical East African flora and their potential as source indicators of organic matter in coastal marine sediments. Journal of African Earth Sciences, 28, 757–766.CrossRefGoogle Scholar
  92. Nitsch, E., Charles, M., & Bogaard, A. (2015). Calculating a statistically robust δ 13C and δ 15N offset for charred cereal and pulse seeds. STAR: Science & Technology of Archaeological Research, 1, 1–8.CrossRefGoogle Scholar
  93. O'Leary, M. H. (1981). Carbon isotope fractionation in plants. Phytochemistry, 20, 553–567.CrossRefGoogle Scholar
  94. O'Leary, M. (1988). Carbon isotopes in photosynthesis. Bioscience, 38, 328–336.CrossRefGoogle Scholar
  95. Osmond, C. B., Allaway, W. G., Sutton, B. G., Troughton, J. H., Queiroz, O., Luttge, U., & Winter, K. (1973). Carbon isotope discrimination in photosynthesis of CAM plants. Nature, 246, 41–42.CrossRefGoogle Scholar
  96. Owen-Smith, R. N. (1988). Megaherbivores: the influence of very large body size on ecology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  97. Pardo, F., Gil, L., & Pardos, J. A. (1997). Field study of beech (t Fagus sylvatica L.) and melojo oak (t Quercus pyrenaica Willd) leaf litter decomposition in the Centre of the Iberian Peninsula. Plant and Soil, 191, 89–100.CrossRefGoogle Scholar
  98. Phillips, S. L., & Ehleringer, J. R. (1995). Limited uptake of summer precipitation by bigtooth maple (Acer grandidentatum Nutt) and Gambel's oak (Quereus gambelii Nutt). Trees, 9, 214–219.CrossRefGoogle Scholar
  99. Ponsard, S., & Arditi, R. (2000). What can stable isotopes (δ 15N and δ 13C) tell about the food web of soil macro-invertebrates? Ecology, 81, 852–864.Google Scholar
  100. Poole, I., Braadbaart, F., Boon, J. J., & van Bergen, P. F. (2002). Stable carbon isotope changes during artificial charring of propagules. Organic Geochemistry, 33, 1675–1681.CrossRefGoogle Scholar
  101. Rabanus-Wallace, M. T., Wooller, M. J., Zazula, G. D., Shute, E., Jahren, A. H., Kosintsev, P., Burns, J. A., Breen, J., Llamas, B., & Cooper, A. (2017). Megafaunal isotopes reveal role of increased moisture on rangeland during Late Pleistocene extinctions. Nature Ecology & Evolution, 1, 0125.CrossRefGoogle Scholar
  102. Robinson, D. (2001). δ 15N as an integrator of the nitrogen cycle. Trends in Ecology & Evolution, 16, 153–162.CrossRefGoogle Scholar
  103. Salazar, S., Sánchez, L.-E., Galindo, P., & Santa-Regina, I. (2012). Long-term decomposition process of the leaf litter, carbon and nitrogen dynamics under different forest management in the Sierra de Francia, Salamanca, Spain. Journal of Agricultural Science and Technology, B 2, 312.Google Scholar
  104. Santana-Sagredo, F., Lee-Thorp, J. A., Schulting, R., & Uribe, M. (2015). Isotopic evidence for divergent diets and mobility patterns in the Atacama Desert, northern Chile, during the late intermediate period (AD 900–1450). American Journal of Physical Anthropology, 156, 374–387.CrossRefGoogle Scholar
  105. Santana-Sagredo, F., Schulting, R., Lee-Thorp, J., Agüero, C., Uribe, M., & Lemp, C. (2017). Paired radiocarbon dating on human samples and camelid fibers and textiles from northern Chile: the case of pica 8 (Tarapacá). Radiocarbon, 1–19.Google Scholar
  106. Sayed, O. H. (2001). Crassulacean acid metabolism 1975–2000, a check list. Photosynthetica, 39, 339–352.CrossRefGoogle Scholar
  107. Schaeffer, S. M., & Evans, R. D. (2005). Pulse additions of soil carbon and nitrogen affect soil nitrogen dynamics in an arid Colorado Plateau shrubland. Oecologia, 145, 425–433.CrossRefGoogle Scholar
  108. Scheu, S., & Falca, M. (2000). The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: stable isotope analysis of a macro- and a mesofauna-dominated community. Oecologia, 123, 285–296.CrossRefGoogle Scholar
  109. Steele, K. W., Wilson, A. T., & Saunders, W. M. H. (1981). Nitrogen isotope ratios in surface and sub-surface horizons of New Zealand improved grassland soils. New Zealand Journal of Agricultural Research, 24, 167–170.CrossRefGoogle Scholar
  110. Sternberg, L. O., DeNiro, M. J., & Johnson, H. B. (1984). Isotope ratios of cellulose from plants having different photosynthetic pathways. Plant Physiology, 74, 557–561.CrossRefGoogle Scholar
  111. Styring, A. K., Manning, H., Fraser, R. A., Wallace, M., Jones, G., Charles, M., Heaton, T. H. E., Bogaard, A., & Evershed, R. P. (2013). The effect of charring and burial on the biochemical composition of cereal grains: investigating the integrity of archaeological plant material. Journal of Archaeological Science, 40, 4767–4779.CrossRefGoogle Scholar
  112. Styring, A. K., Ater, M., Hmimsa, Y., Fraser, R., Miller, H., Neef, R., Pearson, J. A., & Bogaard, A. (2016). Disentangling the effect of farming practice from aridity on crop stable isotope values: a present-day model from Morocco and its application to early farming sites in the eastern Mediterranean. The Anthropocene Review, 3, 2–22.CrossRefGoogle Scholar
  113. Szpak, P. (2014). Complexities of nitrogen isotope biogeochemistry in plant–soil systems: implications for the study of ancient agricultural and animal management practices. Frontiers in Plant Science, 5, 1–19.CrossRefGoogle Scholar
  114. Szpak, P., Longstaffe, F. J., Millaire, J.-F., & White, C. D. (2012a). Stable isotope biogeochemistry of seabird guano fertilization: results from growth chamber studies with maize (Zea mays). PLoS One, 7, e33741.CrossRefGoogle Scholar
  115. Szpak, P., Millaire, J. F., White, C. D., & Longstaffe, F. J. (2012b). Influence of seabird guano and camelid dung fertilization on the nitrogen isotopic composition of field-grown maize (Zea mays). Journal of Archaeological Science, 39, 3721–3740.CrossRefGoogle Scholar
  116. Szpak, P., White, C. D., Longstaffe, F. J., Millaire, J. F., & Sánchez, V. F. V. (2013). Carbon and nitrogen isotopic survey of northern Peruvian plants: baselines for paleodietary and paleoecological studies. PLoS One, 8, e53763.CrossRefGoogle Scholar
  117. Szpak, P., Metcalfe, J. Z., & Macdonald, R. A. (2017). Best practices for calibrating and reporting stable isotope measurements in archaeology. Journal of Archaeological Science: Reports, 13, 609–616.CrossRefGoogle Scholar
  118. Tahmasebi, F., Longstaffe, F. J., Zazula, G., & Bennett, B. (2017). Nitrogen and carbon isotopic dynamics of subarctic soils and plants in southern Yukon territory and its implications for paleoecological and paleodietary studies. PLoS One, 12, e0183016.CrossRefGoogle Scholar
  119. Tahmasebi, F., Longstaffe, F. J., & Zazula, G. (2018). Nitrogen isotopes suggest a change in nitrogen dynamics between the Late Pleistocene and modern time in Yukon, Canada. PLoS One, 13, e0192713.CrossRefGoogle Scholar
  120. Teeri, J. A., & Gurevitch, J. (1984). Environmental and genetic control of crassulacean acid metabolism in two crassulacean species and an F1 hybrid with differing biomass δ 13C values. Plant, Cell & Environment, 7, 589–596.Google Scholar
  121. Tieszen, L. L. (1991). Natural variations in the carbon isotope values of plants: implications for archaeology, ecology, and paleoecology. Journal of Archaeological Science, 18, 227–248.CrossRefGoogle Scholar
  122. Tieszen, L. L., & Fagre, T. (1993). Carbon isotopic variability in modern and archaeological maize. Journal of Archaeological Science, 20, 25–40.CrossRefGoogle Scholar
  123. Tiunov, A. V. (2007). Stable isotopes of carbon and nitrogen in soil ecological studies. Biology Bulletin, 34, 395–407.CrossRefGoogle Scholar
  124. Turner, G. L., Bergersen, F. J., & Tantala, H. (1983). Natural enrichment of 15N during decomposition of plant material in soil. Soil Biology and Biochemistry, 15, 495–497.CrossRefGoogle Scholar
  125. Vaiglova, P., Bogaard, A., Collins, M., Cavanagh, W., Mee, C., Renard, J., Lamb, A., Gardeisen, A., & Fraser, R. (2014a). An integrated stable isotope study of plants and animals from Kouphovouno, southern Greece: a new look at Neolithic farming. Journal of Archaeological Science, 42, 201–215.CrossRefGoogle Scholar
  126. Vaiglova, P., Snoeck, C., Nitsch, E., Bogaard, A., & Lee-Thorp, J. (2014b). Impact of contamination and pre-treatment on stable carbon and nitrogen isotopic composition of charred plant remains. Rapid Communications in Mass Spectrometry, 28, 2497–2510.CrossRefGoogle Scholar
  127. Van Der Merwe, N. J., & Medina, E. (1991). The canopy effect, carbon isotope ratios and foodwebs in Amazonia. Journal of Archaeological Science, 18, 249–260.CrossRefGoogle Scholar
  128. van Klinken, G. J. (1999). Bone collagen quality indicators for paleodietary and radiocarbon measurements. Journal of Archaeological Science, 26, 687–695.CrossRefGoogle Scholar
  129. Vervaet, H., Boeckx, P., Unamuno, V., Van Cleemput, O., & Hofman, G. (2002). Can δ 15N profiles in forest soils predict NO3 loss and net N mineralization rates? Biology and Fertility of Soils, 36, 143–150.CrossRefGoogle Scholar
  130. Vitousek, P. M., Shearer, G., & Kohl, D. H. (1989). Foliar 15N natural abundance in Hawaiian rainforest: patterns and possible mechanisms. Oecologia, 78, 383–388.CrossRefGoogle Scholar
  131. Wang, C., Wang, X., Liu, D., Wu, H., Lü, X., Fang, Y., Cheng, W., Luo, W., Jiang, P., Shi, J., Yin, H., Zhou, J., Han, X., & Bai, E. (2014). Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nature Communications, 5, 4799.CrossRefGoogle Scholar
  132. Warinner, C., Garcia, N. R., & Tuross, N. (2013). Maize, beans and the floral isotopic diversity of highland Oaxaca, Mexico. Journal of Archaeological Science, 40, 868–873.CrossRefGoogle Scholar
  133. Webb, R.H. (1985). Late Holocene flooding on the Escalante River, south-central Utah. Unpublished PhD thesis, The University of Arizona.Google Scholar
  134. Williams, D. G., & Ehleringer, J. R. (2000). Carbon isotope discrimination and water relations of oak hybrid populations in southwestern Utah. Western North American Naturalist, 60, 121–129.Google Scholar
  135. Winter, K., & Holtum, J. A. (2002). How closely do the δ13C values of crassulacean acid metabolism plants reflect the proportion of CO2 fixed during day and night? Plant Physiology, 129, 1843–1851.CrossRefGoogle Scholar
  136. Winter, K., Garcia, M., & Holtum, J. A. M. (2008). On the nature of facultative and constitutive CAM: environmental and developmental control of CAM expression during early growth of Clusia, Kalanchoë, and Opuntia. Journal of Experimental Botany, 59, 1829–1840.CrossRefGoogle Scholar
  137. Withers, K., & Mead, J. I. (1993). Late Quaternary vegetation and climate in the Escalante River basin on the Central Colorado Plateau. Great Basin Naturalist, 53, 145–161.Google Scholar
  138. Wooller, M., Smallwood, B., Scharler, U., Jacobson, M., & Fogel, M. (2003). A taphonomic study of δ 13C and δ 15N values in Rhizophora mangle leaves for a multi-proxy approach to mangrove palaeoecology. Organic Geochemistry, 34, 1259–1275.CrossRefGoogle Scholar
  139. Wooller, M. J., Zazula, G. D., Blinnikov, M., Gaglioti, B. V., Bigelow, N. H., Sanborn, P., Kuzmina, S., & La Farge, C. (2011). The detailed palaeoecology of a mid-Wisconsinan interstadial (ca. 32 000 14C a BP) vegetation surface from interior Alaska. Journal of Quaternary Science, 26, 746–756.CrossRefGoogle Scholar
  140. Yang, Q., Li, X., Liu, W., Zhou, X., Zhao, K., & Sun, N. (2011). Carbon isotope fractionation during low temperature carbonization of foxtail and common millets. Organic Geochemistry, 42, 713–719.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of AnthropologyThe University of British ColumbiaVancouverCanada
  2. 2.The Mammoth Site of Hot Springs South DakotaHot SpringsUSA

Personalised recommendations